
1

CLAM:
C++ Library for

Audio and Music

Introducing the framework

Goals (I)
Original Goal: “To offer a complete,
flexible and platform independent
Sound Analysis/Synthesis C++ library
to meet current and future needs of all
MTG projects.”

• Complete: should include all utilities needed in a Sound
Processing Project (input/output, processing, storage,
display...)

• Flexible: Easy to use and adapt to any kind of need.
• Platform Independent: Compile under Unix, Windows

and Mac platforms.

Goals (II)

The original goals have slightly
changed:

CLAM is part of the European
project AGNULA (A GNU Linux
Audio Distribution): Demudi and
Rehmudi distributions.
CLAM is free software (GPL)
CLAM is public.

• Started in October 2000
• Currently has more than 250 C++ classes (50.000 loc) compiled

and tested under Linux, Windows and partially under MacOS.
• 8 people are working on the core of CLAM

• Xavier Amatriain
• Maarten de Boer
• Pau Arumi
• David Garcia
• Miquel Ramírez
• Xavier Rubio, Albert Mora, Sandra Gilabert

• CLAM has already been used for a number of internal projects:
near lossless time-scaling, saxo synthesis, content-analysis and
Mpeg7 description, real-time performance,...

• CLAM is the base for most Final Studies projects that are done in
the MTG.

Fact Sheet

Why CLAM is different to “anything” else (?)
- Basic difference between spectral processing vs.
Time-domain processing
- Buffer processing vs. sample by sample processing
- Multiple kinds of Processing Data can travel
through the signal path
- We do not have a single Signal class
- Objects may need to process different amounts of
data
- There is not a unique definition of data-chunk
- Cross-platform
- Two-folded usage (library and application)

Projects related to CLAM

- OSW: Open Sound World
- JMAX
- PD
- SoundClass
- AudioMulch
- ...

2

CLAM’s two modes
- Supervised mode (application)

- Under development
- Non-supervised mode (library)

- Has already seen 2 internal releases and
is the base for the public version.
- A number of internal projects have
already used it: Time Machine, SALTO,
CUIDADO, Voice Processor
- Many of the design decisions are driven
by supervised mode compatibility

The non-supervised mode

A C++ library for audio processing

Recommended previous skills
-OO Analysis and Design

- You have to be able to identify classes
for an application and convert a process
thread into a class diagram
- UML is recommended…

- You need some previous C++ knowledge.

Dynamic Types (i)

- Motivation: in C++ (and in most OO
languages) it is not possible to
instantiate/deinstantiate attributes in run-time.
- Dynamic Types are the base for all CLAM
Processing Data and configurations.
- Goals

- Enable the creation of new classes that comply to
CLAM specifications

Dynamic Types (ii)
- Offer a tree-like homogeneus structure and tools to
navigate it.
- A Dynamic Type is like a normal C++ class but it
allows to work with non-instantiated attributes.

- These attributes can be added or removes at run-
time.

- Furthermore, each dynamic attributa has a
homogeneous interface (Add, Remove, Set, Get) that is
implemented automatically.

Dynamic Types (iii)

- The implementation is based on
precompiler macros and templates.
- To define a new class, you have to use
some easy macros.

- Example:
class Note : public DynamicType

{
public:

DYNAMIC_TYPE (Note,4);
DYN_ATTRIBUTE (0, public, int, NSines);
DYN_ATTRIBUTE (1, public, Array<Sines>, Sines)
DYN_ATTRIBUTE (2, public, float, Pitch);
DYN_ATTRIBUTE (3, public ADSR, myADSR);

};

3

Dynamic Types (iv)

- Instantiating attributes
- When a Dynamic Type is instantiated, its attributes
are not necessarily instantiated (only those that have
been instatiated in the DefaultInit() method).

Note myNote; (Will only instantiate those attributes instantiated in
Note::DefaultInit())

- To instantiate attributes by hand
myNote.AddPitch();
myNote.UpdateData(); (only once for a set of Add/Replace

operations)

- Using a dynamic type
myNote.SetPitch(440.2);
float pitch=myNote.GetPitch();

Processing Data (i)
- All data in the signal path must be
encapsulated as a Processing Data Class
- Processing Data Classes are Dynamic
Types
- Most of their interface need not be
implemented (setters and getters are
automatically generated through DT)
- Processing data persistency is
accomplished through direct (and automatic)
XML mapping.
- Inputs and outputs to a Processing object
have to be Processing Data.

- Complex Processing Data classes (such as
spectrum) may have an associated
configuration class.
- The default constructor calls the
DefaultInit() method.

- This is where default attributes should
be instantiated.

Processing Data (ii) Processing Data (iii)

Processing (i)

- All processing in CLAM must be
performed inside a Processing class.
- In the non-supervised mode, data is input
as arguments of the Do(...) method.

- A more complex/efficient Port infrastructure
may also be used.

- The Do(...) method (any of its overloads) is
the only method that is called from the
external processing loop.
- This method is executed at the processing
rate.

Processing (ii)

4

- Control signals are treated in a very
different way:

- Controls generate “events” only when their
state or value is modified.
- These events travel to input controls belonging
to another processing object (these controls have
been previously connected).
- Processing objects can publish methods that
are used as functions called by input controls.
- Processing objects can generate events for their
output controls during the Do(...) execution.

Processing (iii)
- Processing classes have always an
associated configuration class.

- It is a related class where configuration
parameters are stored.
- It can also hold initial values for the controls.
- A configuration parametre can only be
modified if the processing object is not in
“running” status.

Processing (iv)

- Processing objects may be in one of the following
states: running, unconfigured, disabled o ready

Processing (v)

- Inputs and outputs are always Processing
Data (dynamic types)

- Processing objects have to check for the
consistency of the data that is passed as
arguments of the Do(...) methods.
- This may be done every time the method is
called.
- An alternative (and recommended) way is to
use prototypes.

- Once a prototype is configured, the
Processing object “believes” that everything
that arrives follows the prototipe (or else the
system will crash!).

Processing (vi)

Processing (vii) Processing (viii)

5

XML Interface (i)
- Goals

- Implement data persistency.
- Offer a way to store an object in an appropiate generic
format (XML).
- Offer XML output for any class with a minimum
programmer effort.
- Offer automatic ways to make XML representations
out of classes.
- Allow integration of other formats (SDIF, binary...)

- Dynamic Types have an automatically derived XML
interface (Store/Load).
- So, Processing Data classes and configurations also.

-<Spectrum>

-- <prConfig>
<Scale>Linear</Scale>

<SpectralRange>4000</SpectralRange>

<Size>513</Size>

<Type>MagPhase Complex</Type>

</prConfig>

- <MagBuffer>
<content>3.98157 4.02727 4.16642 4.40572 4.75821 5.24668 5.90992 6.81515 8.08461 9.96051

12.9877 18.6098 31.1381 60.5695 98.2945 89.1955 54.8392 30.1422 19.2311 14.0992 11.235
9.40867 8.13581 </content>

</MagBuffer>

- <PhaseBuffer>
<content>3.14159 3.03485 2.93081 2.83178 2.73945 2.65478 2.57805 2.50887 2.44616 2.38745
2.32608 2.23915 2.04041 1.47977 0.115056 3.09922 -1.87873 -1.376 -1.21958 -1.17472 -
1.16297 -1.16238 -1.16613 </content>

</PhaseBuffer>

</Spectrum>

XML Interface (iii)

Visualization
• CLAM offers an architecture to develop a user
interface.
• It is a number of classes that implement a MVC-like
architecture.
• Furthermore, thera are also ready-to-use tools

• Views for the more important processing data
• Debugging tools (Snapshots)

Audio I/O (i)
• The main class for audio input/ouput is the AudioManager:

• This class is in charge of all the administrative tasks related
with stream creation and initialization, using the AudioDevice
class.

• The first thing that you have to do to use audio is to create an
AudioManager object (singleton) that will be called by all other
audio I/O objects.
• Then you can use the AudioIn and AudioOut classes to read or
write audio to the soundcard.

• These objects are created from an AudioIOConfig
configuration where you specify the device, the channel and
the sampling rate.
• These objects process mono channels.

• To specify a device, you must use a string with the following
syntax:

"ARCHITECTURE:DEVICE"

Audio I/O (ii)
• Until this moment we have implemented the alsa architecture and
directx for windows (using PortAudio, RTAudio or DirectX
directly).

• The devices that are available (depending on the hardware
and the system configuration) can be consulted using the
AudioDeviceList class.
• But, if you do not specify the device or you use the
“default:default” string, the AudioManager will choose the
most convenient.

• You can specify what channel you want for each AudioIn or
AudioOut. The AudioManager will use this information to
initialize its internal management. Usually, 0 is used for L and 1 for
R.

Audio I/O (iii)
•Example:

AudioManager audioManager;

inCfgL.SetName("left in");
inCfgL.SetChannelID(0);

inCfgR.SetName("right in");
inCfgR.SetChannelID(1);

AudioIn inL(inCfgL);
AudioIn inR(inCfgR);

6

Audio I/O: file
• The input/ouput of audio files is performed using the AudioFileIn
and AudioFileOut Processing classes.
• At this moement, we only support raw, aiff and wav formats.
• But, opposite to most existing libraries, it allows for concurrent
reading/writing.

MIDI IN
• At this moment we only have MIDI Input for Linux and
Windows (based in PortMIDI).
• The architecture is very similar to the Audio I/O: you also have a
MIDIManager.
• There is a MIDIIn class and a derived MIDIInControl class that is
used to convert input MIDI messages to CLAM controls.
• The MIDIInConfig class has 3 parametres that specify what MIDI
messages will be filtered to a MIDIIn object.

•ChannelMask (bit mask)
cfg.SetChannelMask(MIDI::ChannelMask(1) | MIDI::ChannelMask(2));
• MessageMask (bit mask)

cfg.SetChannelMask(MIDI::MessageMask(MIDI::eNoteOff) |
MIDI::MessageMask(MIDI::eNoteOn));

• Filter (filter to apply to the second byte of the MIDI
message)

MIDI IN
• The MIDIInControl class implements MIDIIn with
one ore more output controls (the number of outputs
depends on the type of filter that is used)
• Controls are generated for each MIDI message that is
received.
• If, for example, you configure a MIDIInControl for
eNoteOn messages, you will obtain two OutControls
(one for the key and the other for velocity).

Tools and frameworks used in CLAM (i)
- Programming language: C++

- flexibility
- efficiency
- standard vs. propietary language

- Programming frameworks
- Windows: Visual C++ (6.0 or 7.1 Everett),
Rational Purify, Rational Distiller.
- Linux: g++, kde and other GNU tools
- Mac: CodeWarrior, g++

Tools and frameworks used in CLAM (ii)
- CVS: System for version control in collaborative code
development (Windows: WinCVS).
- Mantis: Bug managing system through a web interface
- Doxyen: Program that generates html documentation
pages automatically from javadoc comments inserted in
the code.
- Mailing-list

External Libraries
• FFTW (FFT)
• Xerces (to parse XML using the DOM API)
• FLTK (for GUI)
• PTHREADS (for cross-platform multithreading
handling)
• PortMidi (Windows MIDI)
• DirectXSDK, RtAudio and PortAudio (Windows
Audio)

7

Conclusions
• Although there are still a lot of things to do, CLAM is
already an interesting development framework that can
be used for developing efficient and robust audio
applications and research works.
• In the CLAM Tutorial, CLAM is used in a very
specific way (Spectral Analysis/Synthesis).

• It does not deal with Audio I/O, MIDI or real time
processing.
• If you are interested in those subjects you may
work on the different examples availabla (SALTO
and SpectralDelay).

