
CLAM

USER AND DEVELOPMENT
DOCUMENTATION

RELEASE 0.7.0

REVISION 3

Table of Contents
.................. 2I Introduction
.................. 21 Disclaimer
............... 22 License of this document
................. 23 What is CLAM?
.............. 34 What does ’CLAM’ mean?
................ 35 Historical background
................ 36 Supported platforms
.............. 37 Recommended previous skills
................. 48 Basic principles
.............. 48.1 Processing architecture
............... 58.2 Processing classes
................ 68.3 Dynamic Types
............... 68.4 Visualization Module
................ 78.5 System utilities
............... 79 Structure of this document
........... 810 Where to find more information on CLAM
............... 9USER DOCUMENTATION
............. 10II Deploying CLAM in your system
.................. 1011 Roadmap
.............. 1012 Obtaining the CLAM sources
...... 1012.1 GNU Tools distributed with MacOS X 10.2 Specific Issues
............ 1013 Dependencies on third-party libraries
............ 1113.1 External libraries on GNU/Linux
.......... 1213.2 External libraries on Microsoft Windows
............ 12III CLAM Build System Documentation
.................. 1214 Overview
............. 1315 Setting up CLAM Build System
............... 1316 USE / HAS variables
............. 1416.1 Included configuration files
............ 1416.2 Editing the packages-win.cfg file
............. 1416.3 Setup on MS Visual Studio
.......... 1416.3.1 Configuring Visual 6 to use srcdeps
.......... 1516.3.2 Compiling our first CLAM example
.............. 1516.4 Setup on GNU/Linux
.......... 1516.4.1 Compiling our first CLAM example
.......... 1517 How to set up your own programs using CLAM
............. 1517.1 An out-of-the-box example
.............. 1617.2 Customizing your project
.............. 1718 CLAM and QT toolkit library
........ 1819 CLAM build system configuration variables reference
............ 1819.1 Build system variables reference
............ 1919.2 CLAM configuration variables
............. 1919.3 External libraries variables
.............. 2020 Generating CLAM binaries
................ 2021 Some useful links
.............. 2022 Build system troubleshooting
....... 2023 Some common problems while using Microsoft Visual C++
. 2023.1 Getting lots of LNK2001 errors: redefinition of C/C++ Standard Library symbols

i

CLAM User and development documentation

.. 2123.2 Getting lots of compiling errors not related to your Project (What’s config.h about?)

............. 2123.3 Not finding a user defined header

......... 2123.4 My dynamic_cast’s are failing for no apparent reason

......... 2123.5 I am getting an Internal Compiler Error message!!!

.... 2223.6 My Visual C++ is behaving weirdly and signalling non-sense error messages

....... 2223.7 The compiler does not find FL/Flxxxx.H or DOM/xxxx.hpp

..... 2224 Some common problems while using GNU/Linux and GNU C++ Compiler

................... 2324.1 FFTW

........ 2324.1.1 Getting error when trying to locate fftw header/libs

................... 2324.2 FLTK

...... 2324.2.1 Checking fltk libs fails and config.log contains compiler errors
24.2.2 Checking fltk libs fails and config.log contains linking errors, or the program test

................ 23couldn’t be executed.

............... 2324.2.3 fltk-config not found

.................... 2324.3 QT

...... 2324.3.1 No qt headers found! having qt installed correctly in the system

.. 2324.3.2 Found qt headers but crashed testing lib because library (qt or qt-mt) not found.

........ 2324.3.3 Compiler errors related to exit and throw functions

................... 2324.4 XERCES

..... 2324.4.1 Checking xerces libs fails and config.log contains compiler errors
24.4.2 Checking xerces libs fails and config.log contains linking errors, or the program test

................. 24couldn’t be executed

.................... 2424.5 STL

............... 2424.5.1 Getting these errors:

..... 2424.6 Common problems trying to compile and execute CLAM applications

.... 2424.6.1 Compiling is ok but getting errors trying to link/execute the program

................... 25IV Usage tutorial

................... 2525 Introduction

.............. 2526 Instanciating Processing objects

.................. 2627 Processing Data

.................. 2728 Usage examples

................... 28V Usage examples

................... 37VI Dynamic Types

.................... 3729 Scope

................ 3730 Why Dynamic Types ?

.......... 3731 Where can DT be found within the CLAM library?

.................. 3732 Declaring a DT

................... 3833 Basic usage

.............. 3934 Prototypes and copy constructors

................ 4035 Storing and Loading DTs

............. 4035.1 How to explore a DT at debug time

.................. 42VII Processing classes

................... 4236 Introduction

................. 4236.1 Class hierarchies

.............. 4436.2 Coding style and philosophy

......... 4437 Overview of the processing class implementation tasks

........... 4437.1 Declaring the processing interface attributes

........... 4437.2 Implementing the construction mechanism

........... 4437.3 Implementing the configuration mechanism

............ 4537.4 Implementing the execution methods

ii

CLAM User and development documentation

.......... 4537.5 Implementing other optional standard methods

................. 4537.6 Writing the tests

........... 4538 Object construction and configuration interface

............. 4538.1 Processing configuration classes

.......... 4538.1.1 The role of processing configuration classes

............ 4638.1.2 Configuration class implementation

............... 4638.2 Processing constructors

................ 4638.3 Configuration methods

................ 4739 Object execution interface

................. 4739.1 Execution states

................ 4939.2 Execution methods

............. 5039.3 Object execution not using ports

............ 5139.3.1 Do method argument conventions

.................... 5140 Controls

................. 5140.1 Input Controls

............... 5140.1.1 Regular input controls

........... 5240.1.2 Input controls with call-back method

................. 5240.2 Output Controls

................ 5340.3 Controls initialization

................. 5341 Internal object state

.............. 5341.1 Configuration related attributes

............... 5341.2 Execution related attributes

................. 5341.2.1 Initialization

................. 5442 Processing Composite

................. 5443 Exception Handling

.................. 5443.1 Assertions

.............. 5443.1.1 Where to use assertions

.............. 5543.1.2 How to make assertions

................ 5543.2 Run time problems

............... 5544 Writing tests for your classes

................... 5544.1 Why?

................... 5644.2 How?

.................. 5645 Helper classes

................ 5645.1 Enumeration classes

.................. 5645.2 Flags classes

................... 5646 Prototypes

................. 5746.0.1 Footnotes

................. 58VIII Processing Data classes

.................... 5847 Scope

................... 5848 Introduction

................ 5849 Basic structural aspects

.................. 5850 Efficiency Issues

............ 5951 Introduction to CLAM‘s Core PD classes

................... 5951.1 Audio

................... 6051.2 Spectrum

............ 6051.3 SpectralPeak and SpectralPeakArray

.................. 6151.4 Fundamental

................... 6151.5 Frame

................... 6151.6 Segment

.................. 6251.7 Descriptors

iii

CLAM User and development documentation

................. 6252 Basic XML support

................... 63IX XML Support

.................... 6353 Scope

................ 6354 Brief introduction to XML

................. 6355 Storing components

................. 6456 Loading components

................. 6457 Detailed step interface

................. 66X Audio File I/O in CLAM

................. 6658 What is able to do?

.................. 6659 Usage examples

.................... 68XI Audio I/O

................. 6860 The AudioManager

.............. 6861 The AudioIn and AudioOut classes

................ 6861.1 Specifying the device

................ 6861.2 Specifying the channel

.................... 70XII MIDI I/O

................. 7062 The MIDIManager

........... 7063 MIDI I/O Processings and their configuration

............ 7063.1 The MIDIIn and MIDIInControl class

........... 7063.2 The MIDIOut and MIDIOutControl class

............... 7063.3 The MIDIIOConfig class

.......... 7263.4 Dynamically created InControls and OutControls

................. 7264 The MIDIDevice class

.............. 7264.1 Specifying the MIDI device

............... 7264.2 Clocking the MIDI device

................... 7265 MIDI Enums

................ 73XIII The Application Classes

................. 7366 BaseAudioApplication

................. 7367 GUIAudioApplication

.................. 7368 AudioApplication

............. 7469 Creating and running an Application

................. 75XIV Visualization Module

..................... 7570 Plots

................. 7670.1 Plots examples

.............. 7771 Model Adapters and Presentations

.................. 79XV SDIF SUPPORT

............... 80DEVELOPER DOCUMENTATION

............... 81XVI CLAM Coding Conventions

.................. 8172 Indenting code

................. 8173 Naming conventions

................. 8174 Programming style

.................. 8275 Error Conditions

.................. 8276 Debugging aids

.................. 83XVII Error Handling

.................. 8377 Use case analysis

................... 8377.1 Actors

................... 8377.2 Stages

.................. 8377.3 Mechanisms

............... 8478 Sanity checks and assertions

................ 8478.1 Expression assertions

iv

CLAM User and development documentation

............ 8478.2 Statement based ’assertions’ (checks)

............... 8478.3 Documenting assertions

.............. 8478.4 Optimization and assertions

........... 8578.5 Managing assertions from the application

.............. 8578.6 Debugging the release mode

................... 8579 Exceptions

.................. 8579.1 Previous note

............... 8579.2 When to use Exceptions

............ 8679.3 Contract between throwers and catchers

............ 8779.4 Exception data and exception hierarchy

................ 8779.5 Exception handling

................. 8879.6 Contextualization

.................. 89XVIII Dynamic Types

............. 8980 DTs that derive from an interface class

.................. 8981 Typical Errors

............. 8981.1 Detected errors at compile time:

................ 9081.1.1 Constructor errors

............. 9081.1.2 Attribute position out of bounds

............... 9081.1.3 Attribute not defined

............... 9081.1.4 Duplicated attributes

............... 9181.2 Detected errors at run time

....... 9181.2.1 Compiling in debug mode (the macro _DEBUG defined)

.......... 9181.2.2 Compiling in a non debug (release) mode

.......... 9181.2.3 Compiling for the best run-time efficency

................ 9181.3 Non detected errors

............... 9282 Constructors and initializers

................... 9483 Tuning a DT

............. 9484 Debugging aids and compilation flags

............... 9585 Pointers as dynamic attributes

.................. 9586 Copies of DTs

.................. 9587 DTs and XML

......... 9587.1 The default XML Implementation for DynamicTypes

.............. 9687.2 XML aware dynamic attributes

................ 9687.3 Customization basics

............... 9787.4 Reordering and skipping

............ 9887.5 Recalling the default implementation

........... 9887.6 Adding content not from dynamic attributes

........ 9987.7 Storing not as XML elements or changing the tag name

........... 9987.8 Keeping several alternative XML formats

.................. 100XIX Processing Data

................ 10088 Basic structural aspects II

............... 10089 Constructors and initializers

............. 10190 Private members with public interface

.................. 10291 Configurations

................ 10392 Customizing XML output

.............. 10393 Specific attributes: flags and enums

..................... 105XX XML

................. 10594 Components and XML

.................. 10695 XML Adapters

................ 10895.1 Simple types adapters

v

CLAM User and development documentation

.............. 11095.2 Simple type C array adapters

................ 11095.3 Component adapters

............... 11295.4 Loading Considerations

........ 112XXI C pre-processor macros defined and used by CLAM sources

................... 11296 Global flags

................ 11297 Cross-platformness macros

................ 11398 Dynamic Types Macros

.............. 11399 Defensive programming macros

................ 113100 preinclude.hxx Macros

............... 114101 Platform dependant macros

.................. 114102 Private Macros

............... 115CLAM SAMPLE APPLICATIONS

................... 116XXII Introduction

.................. 116103 SMS Example

.................... 116104 SALTO

.................. 116105 Spectral Delay

.................... 116106 Rappid

.................. 117XXIII SMS Example

................... 117107 Introduction

................ 119108 Building the application

............... 120109 An SMSTools walkthrough

.................. 126110 Analysis Output

.................. 128111 Configuration

................... 130112 Synthesis

.................. 131113 Transformation

............. 135114 Implementing your own transformation

.......... 137115 Internal class structure and program organisation

.............. 139116 SMSSynthesis and SMSAnalysis

.................... 141XXIV SALTO

.................. 143XXV Spectral Delay

.................... 144XXVI Rappid

............ 145XXVII Combining CLAM with LADSPA plugins

......... 145117 The LADSPA Toolkit and CLAM, a brief introduction

........... 145118 Using CLAM Processings as LADSPA plugins

........... 145119 Using LADSPA Plugins as CLAM Processings

................ 146MIGRATION GUIDELINES

................. 146120 From 0.6.1 to 0.7.0

................. 147121 From 0.5.5 to 0.5.6

................. 148122 From 0.5.4 to 0.5.5

................. 148123 From 0.4.2 to 0.5.0

.................. 149124 From 0.2 to 0.3

................. 149124.1 Dynamic Types

................. 149124.2 Processing Data

................. 149124.3 Error handling

................ 150124.4 PARANOID macro

.......... 150124.5 Using exceptions as error message generators

............. 150124.6 Using _DEBUG, NDEBUG and so

................. 150124.7 Miscellaneous

vi

CLAM User and development documentation

CLAM RELEASE 0.7.0

USER AND DEVELOPMENT DOCUMENTATION

April 2004

IUA-UPF

Music Technology Group

Source: MTG

Title: CLAM RELEASE 0.7.0 USER AND DEVELOPMENT
DOCUMENTATION

Revision: 3

Current
Developers:

Xavier Amatriain
Pau Arumí
Maarten de Boer
David García
Miquel Ramírez

Past Developers: Xavier Rubio
Enrique Robledo

Contact: clam@iua.upf.es

1

CLAM User and development documentation

I Introduction

1 Disclaimer
This document is offered ’as is’. There may still be formatting mistakes or non-coherent sections or
comments. Please report any such elements to the editor of the document.

2 License of this document
Copyright (c) Music Technology Group (MTG), Universitat Pompeu Fabra (UPF).

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.1 or any later version published by the Free Software
Foundation; with the Invariant sections being this ’Introduction’, with the Front-Cover Texts being the
one herein included, and with no Back-Cover Texts. A copy of the license is available at
http://www.fsf.org/licenses/fdl.txt.

3 What is CLAM?
CLAM is a Free Software framework licensed under GNU-GPL that allows to fully develop
multiplatform audio applications in C++ using advanced processing algorithms. It is not limited to the
processing part of your application; it can help you providing multiplatform solutions for most
problems that an audio application should face:

accessing audio and MIDI devices,
managing threads,
serializing objects in formats such XML and SDIF,
displaying and controlling your application data,
integrating visualization using several multiplatform graphical toolkits,
interconecting your application modules in a decoupled way
...

CLAM is able to do complex audio processing involving:

Management of heterogeneous signal data: not only samples but also spectral data, symbols,
structured data...
Complex data flows: with asyncronous events (controls), diferent rates of data feeding...
Scaling up by composition of smaller processings.
Dynamic creation and interconnection of processing networks.

And last but not least, it comprises a big repository of already done algorithms concerning areas
such as:

Spectral modeling and transformations
Feature extraction
Classification
...

2

CLAM User and development documentation

http://www.fsf.org/licenses/fdl.txt

4 What does ’CLAM’ mean?
CLAM stands for C++ L ibrary for Audio and Music and in Catalan means something like ’a
continuous sound produced by a large number of people as to show approval or disapproval of a given
event’. It is the best name we could find after long discussions and it is certainly much better than its
original name (MTG-Classes).

5 Historical background
CLAM was formerly developed as an internal project on the Music Technology Group at UPF named
MTG-Classes. The aim of the project was to create a foundation of C++ classes to be used by all the
research projects at the MTG. Literally (from the first written draft) the goal was:
’To offer a complete, flexible and platform independent Sound Analysis/Synthesis C++ platform to
meet current and future needs of all MTG projects.’

The three main axes of these goals were defined as:

Complete: should include all utilities needed in a Sound Processing Project (input/output,
processing, storage, display...)
Flexible: Easy to use and adapt to any kind of need.
Platform Independent: Compile under UNIX, Windows and Mac platforms.

These initial objectives have slightly changed since then mainly to accommodate to the fact that the
library is no longer seen as an internal tool for the MTG but as a library that is made public under the
GNU-GPL in the course of the Agnula IST European Project.

6 Supported platforms
CLAM code is standard ISO/ANSI C++. It uses multiplatform libraries to abstract platform dependant
issues. Non portable code and even library dependant code is very localized and isolated. This makes it
easier to port CLAM to whatever platform.

Currently, the following platforms are supported:

Linux
gcc 2.95 Fully supported

gcc 3.X Fully supported

Windows
VisualC++ 6 (SP5) Supported until release 0.6.1, not currently supported any longer

VisualC++ 7.1 Fully Suported

MacOSX gcc 3.X Fully Supported

Reports on CLAM ports to any other platform will be appreciated.

7 Recommended previous skills
Althought CLAM goes toward a visual environment, currently, this "visual builder" (quoting R.E.
Johnson) is in beta stage and CLAM functionalities are only accessible by doing your own programs.
Thus, a good level in object oriented C++ programming experience is needed, although we have tried
our best to keep interfaces as simple as possible.

3

CLAM User and development documentation

http://www.iua.upf.es/mtg
http://www.upf.es/
http://www.agnula.org/

Of course, CLAM is a framework for audio and music processing so some knowledge in those areas
(as well as some DSP basis) is also recommended.

8 Basic principles
The CLAM framework is built on top of some architectural basic elements that are used as building
blocks and should therefore be mastered. Most of this document is about them but, just to have a first
impression, these are the basic principles used in CLAM:

8.1 Processing architecture
A CLAM based system can be viewed as a set of Processing objects deployed as an interconnected
network. Each Processing can retrieve ProcessingData tokens and modify them acording to some
algorithm.

Programmers can keep control over the ProcessingData flow between Processing or they can
delegate this task to one of the many automated FlowControl schedulers.

A set of Processings can be arranged to form a new processing. Thus you can use that new
processing to abstract what the full bunch of Processings does and then scale up to a more complex
system. Processings can be arranged on compile-time (ProcessingComposites), or dinamically on
run-time (Networks).

4

CLAM User and development documentation

Figure 1: CLAM Network

Networks allow to build a CLAM system without no C++ knowledge, using only the graphical
interface. They can be also used to build up rapid prototypes of a later optimized system. The
prototyping environment is still some how limited.

8.2 Processing classes
The Processing classes are the main building blocks of the CLAM framework. All processing in the
CLAM must be performed inside a Processing class.

Interaction between Processings follows a very bounded but flexible interface. This way, CLAM
can manage Processing in a very general way and it boosts the reusability of Processings between
different CLAM systems.

All the Processing configuration process is done by giving it a configuration object before the
Processing object is on the running state. While the Processing is running, the processing algoritm will
be executed every time the Do() method is called at the processing execution rate.

While the Processings is running receive and emits two kinds of output:

Continuous data: That will be fed from and by the Ports every time a Do method is called.
Basically they consist on ProcessingData.
Asyncronous data: Fed from and by the Controls whenever an event happens. They usually
changes the internal state/mode of the algorithm

When no automated FlowControl is involved, you can also overload the Do() method to pass as
parameters the ProcessingData that would be otherwise accessible from the ports. This way of
implementing Processing is now deprecated but still used.

The following figure illustrates all the different components of a Processing class.

5

CLAM User and development documentation

 Algoritm

Internal
State

Out
Controls

Config

Params

Data
Input

Data
Output

In
Controls

Figure 2: Processing Object Representation

See chapter VII and others.
See also section chapter VIII for information on ProcessingData classes.
Controls are explained in section 40

8.3 Dynamic Types
Both, Configurations and ProcessingData, are implemented as DynamicTypes (often DT for short).
DynamicTypes are an abstraction that allows to have objects with not all attributes instantiated.
DynamicType are implemented using preprocessor macros that will expand each attribute declaration
in accessors and instanciation interface among other useful methods.

One of the most used features in dynamic types is that they provide some kind of introspection, and
thus CLAM can provide some useful functionalities in a general way on every new DynamicType you
will define. Examples of those free functionalities that you get by defining some class as DT are XML
serialization, generic atribute visit, automatic interface generation...

You can see section chapter VI for more information on DynamicTypes use.
(See section 35, chapter XX, chapter IX for XML support)

8.4 Visualization Module
The CLAM Visualization Module fullfills two different developers needs. The first one is to inspect
graphically CLAM objects as a debugging aid. The other one is to build a complete GUI based
application that can be used in interaction with the Processing part of a CLAM system.

CLAM-VM has been designed in a very decoupled way so that it can be fully removed harmlessly
from a CLAM system. It provides some general services that are toolkit independent such as thread
safe data caching, model-view comunication and sincronization...

That CLAM-VM infrastructure can be used with any toolkit such as Qt, Fltk... In fact, it provides
already done widgets, the toolkit dependant part. They are mostly implemented using FLTK and
OpenGL but next releases will provide more support on Qt.

6

CLAM User and development documentation

(See chapter XIV)

8.5 System utilities
CLAM provides integrated and platform independent support for system dependant tasks. For
example:

Threading
Midi devices access
Audio devices access
Audio files I/O
SDIF I/O

9 Structure of this document
Although the structure of this document is a bit complex, hopefully by the time you get here you will
be able to understand why the index has been set that way.

Basically, there are three parts to this document:
Part 1. User Documentation: Is the information any user of the CLAM framework should be

aware of.
Part 2. Developer Documentation: Includes all the necessary information for more advanced

users/developers.
Part 3. CLAM Sample Applications: In this part, we explain the most important sample

applications included with CLAM.
Part 4. Migration : Is just a brief summary of the differences between the different releases (for

already introduced and advanced users).
So, this document is intended to work as a more or less progressive introduction to CLAM. Start

reading the first page and stop whenever you think details are becoming overwhelming. Of course for
some particular users some sections may be ’skipable’ and some may even prefer to start by reading
about the sample applications just to get a grasp of what the framework is able to offer.

Going into a bit more details of the different parts, each of them includes the following topics.
Part 1 starts off with some information any CLAM user will need the first time he/she tries to use

the framework: in the ’Deploying CLAM in your System’ chapter you will be guided on how to
configure CLAM in your system; and in the ’CLAM Build System Documentation’chapter you will be
introduced to the features and functionalities of the rather particular build system that is used in
CLAM. In the next chapter you will find a ’Usage Tutorial’ (chapter IV) that introduces the basic
functionality of the CLAM framework, furthermore in this same section we include a listing of other
relevant examples that are kept in the repository. All following chapters focus on the different
functionalities of the framework from a user’s point of view (you will find chapters on Dynamic
Types, Processing classes, Processing Data classes, XML Support, Audio I/O, MIDI I/O, The
Application classes, and the Visualization Module (GUI)).

Part 2’s first chapter, XIII. CLAM Coding conventions, gives some hints on coding
recommendations and conventions for developers. The next chapters (Dynamic Types, Processing
Data classes and XML) give an inside view on how to develop using the internal features of these
CLAM’s building blocks.

Part 3 includes an explanation of the following applications: SMSTools, SALTO, Spectral Delay
and Rappid. The last chapter in this part explains how to use CLAM to develop LADSPA plug-ins.
After you have read the introduction and have managed to compile CLAM, you may wish to go
directly to these examples, before getting deeper into the library.

7

CLAM User and development documentation

Part 4 gives a summary of the differences between this release and previous ones. You can skip this
if you are not already familiar with the CLAM framework. Note: this part explains main differences
between three latest releases, all the previous ones, though, have only been internal to MTG.

10 Where to find more information on CLAM
There are different sources of CLAM related information. All of them, though, are linked and updated
at CLAM’s website at www.iua.upf.es/mtg/clam .

8

CLAM User and development documentation

http://www.iua.upf.es/mtg/clam

USER DOCUMENTATION

9

CLAM User and development documentation

II Deploying CLAM in your system

11 Roadmap
This section explains how to:

Obtain CLAM and the libraries it depends on
Install these packages in your computer for working with CLAM

12 Obtaining the CLAM sources
CLAM source code and third party libraries binaries can be found on our web page --download area--
http://www.iua.upf.es/mtg/clam in both tarball and zip formats.

At this moment CLAM is provided as a source package which is not ment to be compiled as a
binary library. Although in the future this is likely to change we provide an automatic build system in
order to ease the job to the user (you will find information on this build system in the next chapter).

12.1 GNU Tools distributed with MacOS X 10.2 Specific Issues

autoconf upgrade
Please try to upgrade the autoconf program that Apple bundles with MacOS X 10.2 to latest
version (2.59). You can download its sources from http://www.gnu.org/software/autoconf/. If you
cannot install new applications on your system, then please use the configure.macosx script
included in build folder, instead of anything generated by the autoconf tool provided by Apple.

13 Dependencies on third-party libraries
CLAM depends on other external libraries in order to implement low level task such as XML parsing
or cross-platform abstractions (devices, threads, GUI, etc.). This implies that they must be present on
your development environment in order to build applications with CLAM.

The full list of libraries CLAM depends on is:

Any platforms:
FLTK 1.1.4
the Fast Light ToolKit, a GUI library. Mandatory
Website: http://www.fltk.org
Qt 3
a wideused GUI toolkit Optional: a few example uses it.
Website: http://www.trolltech.com
Xerces-C++ 2.3.0
XML tool: implements a DOM API implementation. Mandatory
Website: http://xml.apache.org/xerces-c/index.html.
You can find the sources of this version in Apache Archive
FFTW 2.1.3
a library that implements very efficiently the FFT algorithm. Mandatory
Website: http://www.fftw.org
CppUnit 1.8.0
a C++ testing framework. Is the C++ version of the xUnit family. Optional: for running library
tests.

10

CLAM User and development documentation

http://www.iua.upf.es/mtg/clam
http://www.gnu.org/software/autoconf/
http://www.fltk.org/
http://www.trolltech.com/
http://xml.apache.org/xerces-c/index.html
http://archive.apache.org/dist/xml/xerces-c/
http://www.fftw.org/

Website: http://cppunit.sourceforge.net
OpenGL 1.x
a computer graphics API. Major graphic hardware vendors provide with its own
implementation (usually bundled with their driver packages). However, the SDK is usually provided
either by IDEs like Microsoft Visual Studio or are directly provided by the vendor: check your
hardware manufacturer. Mandatory
Website. There is also a free non-hardware accelerated implementation: MesaLib at
http://www.mesa.org.
libsndfile 1.0.6
a library for reading and writing several audio file formats. Mandatory
Website: http://www.mega-nerd.com/libsndfile
Underbit’s libmad 0.15
Underbit’s Mpeg Audio Decoding library. Mandatory
Website: http://www.underbit.com/products/mad
Xiph.org Ogg/Vorbis SDK 1.0.1
Xiph.org free implementation of Vorbis I encoder and decoder. Mandatory
Website: http://www.xiph.org
id3lib 3.8.3
a library for parsing ID3 tags found on Mpeg audio bitstreams. Mandatory
Website: http://id3lib.sourceforge.net/

Only on GNU/Linux:
ALSA Library
the library to interface the Advanced Linux Sound Architecture. That is: the sound devices.
Mandatory
Website: ALSA project http://www.alsa-project.org.

Only on Windows:
PortMIDI
a library for accessing in a cross-platform way to MIDI devices. Optional: a few examples use
it.
Website: http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/music/web/portmusic
Win32 Pthreads
a POSIX Threads standard implementation on top of Win32 API. Mandatory
Website: http://sources.redhat.com/pthreads-win32
Microsoft DirectX SDK 8.1
own Microsoft SDK for using their Multimedia API. Mandatory
Website: http://www.microsoft.com/windows/directx/default.aspx

The following sections will give you guidelines on how to deploy them in either GNU/Linux and
Windows platforms. If, after having read these instructions, you still have problems please browse
through the CLAM mailing list archives or post a new mail to the list if you find that your question has
no answer there either.

13.1 External libraries on GNU/Linux
Your GNU/Linux distribution should have the suited versions for the required libraries. However, it is
possible that the normal package has some problems: it is inexistent, it is a wrong version, it is
compiled with the non-default compiler, or it is compiled with wrong options.

In case you run on some of the above problems, check if there is a suitable tarball in our web: We
provide some compiled libraries for Debian-Woody and Red Hat 9.

11

CLAM User and development documentation

http://cppunit.sourceforge.net/
http://www.mesa.org/
http://www.mega-nerd.com/libsndfile
http://www.underbit.com/products/mad
http://www.xiph.org/
http://id3lib.sourceforge.net/
http://www.alsa-project.org/
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/music/web/portmusic/
http://sources.redhat.com/pthreads-win32/
http://www.microsoft.com/windows/directx/default.aspx

If this is not your case, or you still have problems we recommend to download and compile the
sources directly.

If you do that take into account these hints:

fltk 1.1.4
Enable shared libraries when configuring fltk, they are disabled by default. Once downloaded and
extracted the source package, configure it with the command:

$./configure --enable-shared --enable-threads --enable-xdbe --enable-xft

If you don’t have administrator rights to install libraries in the standard location, our build system
expect them the same directory as CLAM root. Actually this is the way they are deployed on
Windows.

13.2 External libraries on Microsoft Windows
To make it easy for Windows users we have precompiled binaries of all the needed libraries. They are
available for download in the CLAM web, download section

All of them are generated using Microsoft VisualC++ 7.1.(.NET) although we still keep the ones
compiled with VisualC++ 6.0 for backwards compatibility.

Windows has no convention on how to install libraries --both precompiled binaries and
development headers. We have configured our build system in order to find libraries at the same
directory level than the CLAM root directory.

For example:

 devel\CLAM\
 devel\fltk\
 devel\xercesc\
 devel\fftw\
 devel\...

Note on fftw: fftw can work on two modes with different precission and speed: ’float’ and ’double’.
Both versions are available on the web and you must make sure that the fftw directory you place in the
same level as CLAM dir must fit with the value of CLAM_DOUBLE build system variable. (See
chapter III for more details on this).

CLAM uses ’float’ as default so to start using CLAM extract the float-version zip.
Note on DLLs: Once you have downloaded all the development kits, you should scan the lib\

subdirectories inside each library folder, and copy all the Dynamic Linking Libraries (.dll) to some
place pointed by your system PATH environment variable.

We recommend to create a directory named dll at the same level as the libraries directories. Copy
there the dlls and add it to the PATH environment variable.

III CLAM Build System Documentation

14 Overview
CLAM provides an automatic build system which allows you to generate and maintain GNU
Makefiles and VisualC++ 6/7.1 project files (.dsp/.prj).

This automatic build system is most useful taking in account that at the moment CLAM is not
distributed in a compiled (binary) library. Thus it manages to hide to the user all details regarding:
necessary implementation files, include dirs, external libraries and compilation flags.

12

CLAM User and development documentation

http://www.iua.upf.es/mtg/clam/download.html

Consider the following source dependency graph:

Without a build system helper you would have to add by hand each .cxx file into your Makefile or
Visual project in order to compile it. The CLAM automatic build system uses an small and fast
application called srcdeps that finds the source files dependencies.

In the previous example, supposing we say to the srcdeps that we want to compile main.cxx . It
would make the following deduction:

 ’As main.cxx must be compiled and includes both blue.hxx and green.hxx
 then blue.cxx and green.cxx must be also compiled’

So, when srcdeps finds a header dependency to Foo.hxx , it looks for the Foo.cxx
implementation file. And in the case that it is found, it applies the same search recursively.

Of course additional implementation files --not reachable from dependent headers-- can be specified
as starting points. The common case is that only the .cxx with the main function has to be specified.

For each executable --or binary in general-- you want to generate, you must use a file named
settings.cfg in order to provide those starting points and other build specifications. See section
19.1 for more details on how to do this.

Because the automatic build system relies on a compiled application srcdeps to do its job, after
downloading CLAM we’ll need to compile this application. Next section describes how to do it.

15 Setting up CLAM Build System

16 USE / HAS variables
In order to keep track of what external libraries to use for each project, and whether they are available,
the srcdeps configuration files used by CLAM contain several USE_[feature] and
HAS_[feature] variables.

On Windows, the user has to make sure that the HAS_[feature] variables reflect it’s system
installation, on Linux and MacOSX they are set to 1 or 0 when running the configure script in
build/

When srcdeps parses the configuration files, it makes sure that all HAS_[feature] and
USE_[feature] variables are consistent. In other words, it will give an error if it noticed that a
specific USE_[feature] is set to 1 while the corresponding HAS_[feature] is set to 0

Sometimes, the settings may specify only the use a certain feature when it is indeed possible. This
can be done by setting

USE_[feature] = $(HAS_[feature])

13

CLAM User and development documentation

See section 19.3 for a full list of these variables.

16.1 Included configuration files
Looking at a typical srcdeps settings.cfg file, you can see the following files are included
(directly or indirectly):

$(TOP)/build/defaults.cfg
Default settings for all USE_[feature] variables. Typically these are overwritten in the
settings.cfg file.

packages.cfg
packages-win.cfg or
packages-posix.cfg

All HAS_[feature] variables, to indicate which external libraries are present on the system.
Human-edited on Windows, generated by configure on Linux/MacOSX (from
packages-posix.cfg.in)

$(TOP)/build/system.cfg
system-win-common.cfg
Common (operating-system/platform indepenend) configuration
system-win.cfg or
system-posix.cfg
Operating-system/platform dependend configuration, typically library files, include paths, etc.
Human-edited on Windows, generated by configure on Linux/MacOSX (from
system-posix.cfg.in)

16.2 Editing the packages-win.cfg file
Before continuing, make sure that build/packages-win.cfg file reflects your installation. This
file will be read (through includes) when you run srcdeps . If you make any change to this file, you
will need to rerun srcdeps .

16.3 Setup on MS Visual Studio
Open the Visual workspace file srcdeps.dsw located on CLAM_DIR\build\srcdeps\ , and
compile the srcdeps project. Make sure you are building the binary using the "release"
configuration. That’s just for efficency reasons.

Visual will leave the output executable srcdeps.exe on the CLAM_DIR\build\srcdeps\
directory. Now we have to configure Visual in order it can automatically execute srcdeps when
some CLAM project (.dsp) needs to be redone.

16.3.1 Configuring Visual 6 to use srcdeps

1. Select Tools->Options ...
2. Click on the ’Directories’ tab
3. From the combo box labeled ’Show directories’ select ’Executable files’
4. Scroll the list below labeled ’Directories’ up to the bottom and double-click on the blank line.
5. Enter or browse the path to srcdeps.exe

14

CLAM User and development documentation

16.3.2 Compiling our first CLAM example

Now we are going to compile the example application "SMSTools2" that comes with CLAM. Doing
so you both will be able to play with an application that gives a taste of what CLAM can do, and will
confirm --hopefully-- that the CLAM environment is correctly set up.

Open the Visual project SMSTools.dsp which is on
CLAM_DIR\build\Examples\SMS\Tools\ and compile it (it takes a while...)

If something went wrong check you followed the above steps and see the Windows Troubleshooting
section See section 22.

You can see that the file settings.cfg appears in the project files view. This file defines
settings of the project and after any change you are able to apply them to the dsp project by just right
clicking over that file and choose ’compile’ from the contextual menu. This execute srcdeps taking
settings.cfg as a parameter

Important note:
Don’t change configuration values or add files directly to the project, instead you should modifiy

settings.cfg and re-run srcdeps as explained before. Otherwise you’ll lose the manual
changes the next time you run srcdeps

16.4 Setup on GNU/Linux
Change dir to CLAM_DIR/build/srcdeps and invoke ’make’ to build the srcdeps binary.

Once srcdeps has been created, we will check if all the required external libraries. To do so,
change dir to CLAM_DIR/build and type:

$ autoconf -f
$./configure

16.4.1 Compiling our first CLAM example

Now we are going to compile the example application "SMSTools2" that comes with CLAM. Doing
so you both will be able to play with an application that gives a taste of what CLAM can do, and will
confirm --hopefully-- that the CLAM environment is correctly set up.

Change dir to CLAM_DIR/build/Examples/SMS/Tools/ . Execute make
CONFIG=release to generate dependencies and compile the sources (it can take a while...).

If something went wrong check you followed the above steps and see the GNU/Linux
Troubleshooting section See section 22.

17 How to set up your own programs using CLAM
This chapter is a little tutorial for setting up an example application using CLAM and its build system.
In first place we’re going to compile a given simple application --very straight. And in second place
we’re going to go through all possible customizations in the build settings that the user might need to
set up more complicated projects.

17.1 An out-of-the-box example
Following this steps you’ll get an application which performs an FFT of a random generated audio and
stores its spectral equivalent in a file in XML

1. Go into your new unpacked CLAM dir. Inside /build you’ll find this dir:
compiling_against_CLAM_example . Copy this dir at the same directory that contains the
CLAM sources.

15

CLAM User and development documentation

Note that this copied directory, apart from the .cxx file with a main function, contains a subdir
named build/ with the configuration files necessary to use the automatic CLAM build
Hint: in linux, cp -ar <src> <dst> copies a directory recursively

2. Edit the build/clam-location.cfg and change CLAM_PATH so it points to the CLAM dir --maybe
you’ll find that this value is already properly set.

3. At this point we need to have CLAM correctly deployed and srcdeps already compiled. See section
15 for how to do it.

4. Now our way forks depending on the choosed compiler
gcc
Just call make with ’debug’ or ’release’ as argument:

$ make CONFIG=debug

This will generate the needed dependencies and compile the program
Note: before running make you must have made the configure dance. See section 16.4.
MS Visual 6
The first time we’ll need to generate the .dsp file. For that we’ll need to use the command line.

change your current dir to the buid subdir of our example directory
from this dir execute the srcdeps --which is in the CLAM/build/srcdeps dir-- passing
the settings.cfg as argument. For example:

$../../CLAM/build/srcdeps/srcdeps settings.cfg

srdeps generate a .dsp with the smallest subset of the CLAM implementation files needed
to compile the example.
further runs of srcdeps can be achieved directly from the MS Visual IDE (compile
settings.cfg). See section 16.3 for more details.

Hopefully we’ve been able to run the example and play with spectral data in XML. From here we’ll
see how to customize the build options and to create more complex projects

17.2 Customizing your project
Here we’re going to go through the things you should know when setting your own project that
compiles against CLAM and using its automatic build system.

First of all, we assume that you allready have created a root directory for your project

we recomend to create a build/ directory inside your project dir. There you’re going to place all
the configuration files that the build-system needs. There you must copy --from the
compiling_against_clam_example dir-- the following files:

clam-location.cfg
defaults.cfg
Makefile
Makefiles.rules
settings.cfg
system.cfg

maybe you’ll like to organize your code starting from a src/ directory. This is up to you but has
to be taken in account when configuring the build files
modify clam_location.cfg making the CLAM_PATH variable to point to the CLAM root
directory. You should use the absolute path.
modify the TOP variable of Makefile. It must point to your project root dir. Its value should

16

CLAM User and development documentation

probably be just ../ but is also feasible that you want to spread severals Makefiles in different
subdirectories of build/ thus the TOP variable must be defined accordingly.
settings.cfg is the most important file you’ll need to tweek. Notice that if you want too build
several executables you’ll need to create a directory for each one containing both
settings.cfg and Makefile .
What follows is a list of the settings.cfg variables you might need to modify. See section 19.1 for
more details.

TOP: must point to your project root.
PROGRAM: the name of your binary --the executable.
various library flags: changing its value {0,1} you can choose to link or not against several
libraries (i.e. fltk, fftw, xerces-c, etc)
PRJ_SEARCH_INCLUDES: the directories that contains your headers. Notice that you don’t
have to add any CLAM directory here.
PRJ_SEARCH_RECURSE_INCLUDES: the same as before but now including all the
recursive directory tree
SOURCES: all the entry points: the implementation files (i.e. .cxx files) that you’ll want to
compile and can not be automatically deduced. Write the source files relative to the TOP. I.e.:

SOURCES = $(TOP)/program_using_clam.cxx

Normally you’ll only need to include the implementation file that contains the main function.
Note: More info about how the CLAM automatic build system works can be found here: See
chapter III-Overview

Now we should be ready for a nice compilation !
If we are using gcc just call make CONFIG=[debug|release] standing in the proper

directory --where the settings.cfg and Makefile are. This will both generate the dependencies and
will compile the project.

Otherwise, if you are stucked with MS Visual run the CLAM srcdeps.exe application from your
directory --where the settings.cfg stands-- and you’ll get a ready-to-use dsp file.

That’s it, hopefully you are compiling your project agains CLAM, without dealing in manualy
finding the CLAM sources it needs.

18 CLAM and QT toolkit library
CLAM gives to the user complete support if he wants to use QT to develop his graphical user
interfaces. This library uses a special kind of macros in its code that needs a preprocessing step in
order to work correctly. In order to activate this support USE_QT=1 must be declared in the
settings.cfg file of the project.. There are two kinds of actions:

Create classes with Q_OBJECT macro declared - The project needs to create a ’moc’ file for each
header which declares the macro
Srcdeps searches for Q_OBJECT in the source files, and if the macro is found a moc file will be
generated inside $(build_dir)/moc/.
Use .uic files generated from qt designer - The project needs to generate moc files using this .ui,
and compile them with the rest of the source code. In this case the user needs to specify inside
settings.cfg the .ui files to be preprocessed, using the variable UI_FILES. (for example, UI_FILES
= ControlPanel.ui). The header generated will have a .h extension (ControlPanel.h), and will be
stored in $(build_dir)/uic/ directory. This header must be included from the source file that needs
it.

17

CLAM User and development documentation

19 CLAM build system configuration variables reference
There are two main kinds of config variables depending on the values they may take:

Boolean variables - these can only have values of 0 or 1. Usually 0 means that the variable effect is
disabled, and 1 that it is enabled.
Textual variables - they are a string, for instance, a relative path to some file

Note for Windows users: you should use frontslashes ’/ ’, as directory separator, instead of
backslashes ’\ ’, which is the usual way in Windows.

Depending on the effect, there are three kinds of variables:

Build System variables - variables whose value just affects the CLAM build system behaviour
while naming binaries or searching for certain files.
External Libraries variables - variables whose value determines whether the build system will
make your application link or not to some (or any) of CLAM external libraries.
CLAM internal variables - these variables are mainly compile-time flags that activate/deactivate
certain framework features or change some framework behaviour.

Now we will see a detailed explanation for each of the variables meaning and possible values.

19.1 Build system variables reference

TOP
(Textual) - Should contain the relative path from the settings.cfg file to the ’top’ of the project
source tree
PROGRAM
(Textual) - Should contain the name for the program binary
PRJ_SEARCH_INCLUDES
(Textual) - Should contain the lists relative paths, from settings.cfg location, to folders where you
want srcdeps to look for binary dependencies, usually the folders where you have your sources.
Note that srcdeps *will not* perform a recursively descent search on these folders.
PRJ_SEARCH_RECURSE_INCLUDES
(Textual) - Should contain the list relative paths, from settings.cfg location, to folders where you
want srcdeps to look for binary dependencies, usually the folders where you have your sources.
Note that srcdeps *will* perform a recursively descent search on these folders.
SOURCES
(Textual) - Should contain the source file that contains the application entry point. While building
library binaries or not following for some reason the rule ’for each header file there exists a source
file with the same name’ then you should add the source relative paths, from current settings.cfg
location.

Note that textual variable values should follow the GNU Makefile variable syntax. See section 21 if
you are unfamiliar with GNU Makefile. If you are not working with GNU development tools and you
are not interested in learning how to write Makefile scripts then take into account the following.

Note that you can assign several tokens (variable values separated by spaces) to the same variable as
in:

PRJ_SEARCH_INCLUDES= ../../../foo/bar/whatever ../../../foo/bar/stuff ../../../foo/bar/thingamajig

18

CLAM User and development documentation

sometimes you could have so many tokens that reading the variable assigned value can be hard.
Then you may break the tokens into several lines as in:

PRJ_SEARCH_INCLUDES= \
 ../../../foo/bar/whatever \
 ../../../foo/bar/stuff \
 ../../../foo/bar/thingamajig \

note that the backslash, ’\’, tells srcdeps that the values assigned to PRJ_SEARCH_INCLUDES
variable span several lines. Note that whenever you begin a new line you must type in a ’tab’ character
(spaces are not enough) and when you finish the last line you must ensure it finishes in a newline
character (pressing Return should suffice).

19.2 CLAM configuration variables

CLAM_DOUBLE
(Boolean) - This variable controls whether CLAM::TData datatype is either a single precision
floating-point number (ANSI C++ float type) or a double precision floating-point number (ANSI
C++ double type).
CLAM_USE_XML
(Boolean) - This variable controls whether CLAM code is built with XML-based Object External
Storage support. Disabling it could improve compiling speed as well as reduce code size.
CLAM_DISABLE_CHECKS
(Boolean) - This variable controls whether CLAM internal precondition, postcondition and
invariant verification checks are performed or not. Deactivating it could improve code speed in
spite of robustness.
CLAM_USE_RELEASE_ASSERTS
(Boolean) - This variable controls whether CLAM Asserts (see [documentación de los asserts])
behave equally in "debug" and "not debug" mode.

19.3 External libraries variables

USE_ALSA
(Boolean) - Tells the build system to make applications to link against ALSA. Note that this
variable can only have effect on GNU/Linux systems.
USE_FFTW
(Boolean) - Tells the build system to make applications to link agains the FFTW library.
USE_FLTK
(Boolean) - Tells the build system to make applications to link against FLTK.
USE_DIRECTX
(Boolean) - Tells the build system to make applications to link against DirectX SDK. Note that this
variable only has effect on Microsoft Windows(c) systems.
USE_PORTMIDI
(Boolean) - Tells the build system to make applications to link against Portmidi. Note that this
variable only has effect on Microsoft Windows(c) systems.
USE_RTAUDIO
(Boolean) - Tells the build system to make applications to link against RtAudio. Note that this
variable only has effect on Microsoft Windows(c) systems.
USE_PTHREADS
(Boolean) - Tells the build system to make applications to link against pthreads (POSIX threads
library). Note that this variable only has effect on Microsoft Windows(c) systems.

19

CLAM User and development documentation

http://www.alsa-project.org/
http://www.fftw.org/
http://www.fltk.org/
http://www.microsoft.com/windows/directx/default.aspx
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/music/web/portmusic/
http://ccrma-www.stanford.edu/~gary/rtaudio/
http://sources.redhat.com/pthreads-win32/
http://sources.redhat.com/pthreads-win32/

USE_QT
(Boolean) - Tells the build system to make applications to link against Qt Toolkit.
USE_CPPUNIT
(Boolean) - Tells the build system to make applications to link against cppUnit library.

20 Generating CLAM binaries
TODO: No information about generating a CLAM library binary is available yet

21 Some useful links
To get some insight on the ’source dependencies issue’ and GNU Makefile syntax you may visit the
following links:

http://www.eng.hawaii.edu/Tutor/Make/

22 Build system troubleshooting
Problem:I get some external library related compile or undefined symbols errors.
Cause 1: Check your USE_XXXX directives in settings.cfg for the library to be linked.
Cause 2: Check you have already downloaded CLAM external libraries and that the libraries are
placed following the directions specified for your system.
Problem: When "compiling" settings.cfg from within Visual Studio IDE a message appears telling
me: ’Cannot open myproject.dsp for writing’
Solution: Use the command-line method for generating the .dsp.
Problem: Srcdeps crashes in Windows while generating dependencies.
Solution: VisualC 6 have some bugs on code generation, please upgrade to the Service Pack 5.

23 Some common problems while using Microsoft Visual C++

23.1 Getting lots of LNK2001 errors: redefinition of C/C++ Standard
Library symbols
Microsoft C/C++ ANSI Standard Library run-time binaries come in six different versions: Single
Threaded Release, Single Threaded Debug, Multi Threaded Release, Multi Threaded Debug and
Multi-threaded with Dynamic Linking Release and Multi-threaded with Dynamic Linking Debug. This
multiplicity makes possible the following pitfall: suppose you have some external library, such as
FLTK which links statically against, say, the Single Threaded Release version, and then you try to link
against FLTK binary (and, of course the standard library binary) you get a number of linking errors
about duplicate symbols such as malloc, realloc, etc. The way of getting rid of this is to make your
project link dynamically against the Multithreaded Dynamic Linking Library. This can be achieved by
doing the following: go to Project->Settings (or ALT+F7), select your project from the project
browser on the left and then click on the C/C++ tab on the right, select Code Generation option on the
Category combo-box and then you will see another combo-box labelled "Use run-time library:". Select
there the "Debug Multithreaded DLL" option if your project is in Debug or the "Multithreaded DLL"
option if otherwise. Note that this phenomenon not only arises with FLTK: it would be wise configure
always the projects in this manner, since it is unharmful and saves many headaches about obscure
linking errors.

20

CLAM User and development documentation

http://www.trolltech.com/
http://cppunit.sourceforge.net/
http://www.eng.hawaii.edu/Tutor/Make/

23.2 Getting lots of compiling errors not related to your Project
(What’s config.h about?)
It is common practice amongst library developers to allow library users to alter some inner
mechanisms or configure the library for a concrete platform (either OS, hardware or compiler) by
"prefixing" all library source files with a C header file containing some macros that define a concrete
behaviour or policy for the library binary. Then the users can undefine or define the necessary macros
for obtaining its desired configuration. However, especially under Microsoft Visual Studio it is easy to
forget about including this prefixing file. Whenever you get some unexpected or unrelated to your
work compiler errors it is wise to check that Visual Studio is prefixing Library sources by doing this:
go to Project->Settings (or ALT+F7), select your project from the project browser on the left and then
click on the C/C++ tab on the right, and check that inside the Project Options textbox on the right
appears the following /FI"config.h". If it doesn’t appear add it. If it is there check that your
"Additional Include Directories" on the "Pre-processor" category are pointing
to.../../src/Defines/Windows. If the compiler still complains then the problem could be elsewhere and
that is beyond the scope of this document :).

23.3 Not finding a user defined header
Usually this pitfall is caused by having not specified to the compiler the needed additional include
directories. This can be done by: go to Project->Settings (or ALT+F7), select your project from the
project browser on the left and then click on the C/C++ tab on the right, select on the "Category:"
combo-box on the right the "Pre-processor" option. Then appears on the right a textbox labelled
"Additional include directories:", and then just add the path RELATIVE TO THE DIRECTORY
WHERE THE .DSP FILE IS IN YOUR HARD DISK . This could have the form
".../../draft/mything" or something similar.

23.4 My dynamic_cast’s are failing for no apparent reason
Just check that your C/C++ Project Settings, on the category Language enable RTTI (Run Time Type
Information). If this setting is already set then you should revise your code (and remember that
temporaries have not a reliable virtual function table).

23.5 I am getting an Internal Compiler Error message!!!
The dreaded error messages ’par excellence’. These ’errors’ are signalled by Microsoft IDE whenever
the compiler dies ungracefully due to a Segmentation Fault. These compiler crashes happen
whenever the parser found something extremely standard or some of extremely convoluted C++ code.
Here you have a list of possible causes for these errors:

Using precompiled headers
Sometimes, under Windows 2000, and especially whenever you have the option set but you are

not using explicitly this Visual C++ feature you may get one these messages. If you do not intend
to use them in your project, and you should not, deactivate this option from the project settings.
Hardcore templates

There are a number of C++ features related to templates that sometimes, even using them
’correctly’ will make the parser to die hard. For instance things like:

template < typename A, typename B >
void foo_function(int t)
{
}

21

CLAM User and development documentation

template <>
void foo_function< someA, someB >(int t)
{
}
int main(void)
{
 foo_function< someA, someB >(3);
 return 0;
}

The parser will die at the line containing the call to foo_function.
Not closing properly strategically placed brackets

Not closing namespace declarations usually make the parser to die, since for some reason it
confounds and match the bracket with the first available. Even if this ’first available bracket’ is on
another file. This may also happen with scope declarations such as class scopes, loop scopes, etc.
Using nested namespaces

Visual C++ 6.0 behaviour is erratic at best. Some features do not work as expected (i.e. as
stated on the ANSI) and others, such as references to identifiers declared inside nested namespace
from outside those namespace (i.e. MTG::MTGTest::foo or nasty errors as FFT::FFT::Do) may
kill the parser outright under certain conditions.
Convoluted C

Difficult expressions such as
MemFunc &memFunc(*(MemFunc*)(void*)(ftor.memFunc))
are also Microsoft parser’s silver bullets.

23.6 My Visual C++ is behaving weirdly and signalling non-sense error
messages
Visual C++ hosts a quite impressive list of bugs, so this is clearly a sign that you have uncovered some
particularly nasty or weird. We cannot give you any outright solutions, since many times we are
hassled by this kind of issues. But sometimes rebuilding your project from scratch or disable
function-level linking (Incremental linking feature) helps to make thins saner. Good Luck!

23.7 The compiler does not find FL/Flxxxx.H or DOM/xxxx.hpp
Note that when in your code you use #include <something.h> you are telling the compiler that that
header can be found in the System Headers path. This feature has a lot of sense under UNIX where
you have a /usr/include or similar dir where all headers are neatly deployed. But under Microsoft
Visual Studio this can mean two things: that either you have to copy manually the folders with the
includes into Microsoft Visual Studio directory/VC98/Include dir or follow our guidelines for creating
a sandbox.

This FAQ-like section does not covers all possible issues you might find while using Visual C++
but we hope they solve the most typical of them. Feedback about new issues or alternative solutions to
situations described above is welcomed.

24 Some common problems while using GNU/Linux and GNU
C++ Compiler
The motivation of executing autoconf & configure in CLAM_PATH/build is to check if your system
configuration will be able to compile and execute CLAM applications. You can get a lot of different
problems related to external libraries, so we have created a compilation of the most common,

22

CLAM User and development documentation

classified by the step where this problem arises.

24.1 FFTW

24.1.1 Getting error when trying to locate fftw header/libs

You can search in config.log where is the error if the configure stops at the lib checking. Surely it will
be related to the installation of fftw, because CLAM needs both versions (float and double) of libs and
headers. Please check that.

24.2 FLTK

24.2.1 Checking fltk libs fails and config.log contains compiler errors

Check that you use fltk-1.1.4, because some interface has been changed (and some has been created),
so the errors can be related to the fltk version you are trying to compile against.

24.2.2 Checking fltk libs fails and config.log contains linking errors, or the
program test couldn’t be executed.

Make sure you have LD_LIBRARY_PATH pointing to all the locations needed

24.2.3 fltk-config not found

You have a fltk version without this utility (older than 1.1), or the PATH variable doesn’t point against
its location. Set PATH correctly or download a new version from fltk official web (or the binaries you
can get in CLAM web). Anyway, it should work without this program if you have fltk-1.1.4 or newer.

24.3 QT

24.3.1 No qt headers found! having qt installed correctly in the system

Use QTDIR variable to tell the configure where you have qt (like export QTDIR=/usr/qt/3).

24.3.2 Found qt headers but crashed testing lib because library (qt or qt-mt) not
found.

Make sure QTDIR is correctly pointed, and you have a qt version newer to 3.0.

24.3.3 Compiler errors related to exit and throw functions

Remove config.cache and rerun autoconf with 2.5X version. (like autoconf-2.57).

24.4 XERCES

24.4.1 Checking xerces libs fails and config.log contains compiler errors

You’ll need exactly xerces 2.3, because in newer versions they have broken the interface, and CLAM
won’t be capable of link against it.

23

CLAM User and development documentation

24.4.2 Checking xerces libs fails and config.log contains linking errors, or the
program test couldn’t be executed

Make sure you have LD_LIBRARY_PATH pointing to all the locations needed

24.5 STL

24.5.1 Getting these errors:

checking for std::vector::at() method in libstdc++... no
checking for standard sstream header in libstdc++... no
checking if stringstream::str() returns std::string in libstdc++... no

Remove config.cache and rerun autoconf with 2.5X version. This error is related to a bug
inside autoconf-2.1X combined with gcc-3.X, so you’ll need to run an autoconf version newer in order
to create a correct configure for this compiler version.

24.6 Common problems trying to compile and execute CLAM
applications

24.6.1 Compiling is ok but getting errors trying to link/execute the program

Make sure you have LD_LIBRARY_PATH pointing to all the locations needed. It’s needed when you
have installed external libraries in a local location. If you have, for example, fltk and xerces installed
in the same directory where you have CLAM, you should set LD_LIBRARY_PATH in this way:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/xerces/lib:/path/to/fltk/lib/

24

CLAM User and development documentation

IV Usage tutorial

25 Introduction
This document provides a first glance to the usage of CLAM as a signal processing and sound
synthesis framework for C++ applications, following several simple code example. The source code
this the examples is included with the source code of the library (in the directory
examples/Tutorial.

CLAM consists of a set of C++ classes. There are two main kinds of classes in the library:

1. Processing Classes, which perform the signal processing operations.
2. Processing Data Classes, which are placeholders for the data that flows between Processing

objects.

A Processing class has a set of data inputs and a set of data outputs. Each of them will receive
Processing Data of an specific type. Several such data types exist (also as C++ classes): Audio,
Spectrum, statistical descriptors, etc.

A processing class can also have a set of input and output controls. These are attributes that can be
used to change the Processing object behavior once it is ‘‘running’’ setting internal run-time execution
variables.

Finally, a Processing Object is created and configured using a configuration object, which may
define its architecture and its behavior. This configuration may be set at object construction time, or
later.

26 Instanciating Processing objects
Each processing class (and its configuration class) is defined in a different library header file. To
instanciate an FFT processing object, for example, you should do the operations shown below.

// We include the FFT class and associated Processing Data objects
#include <FFT.hxx>
#include <Audio.hxx>
#include <Spectrum.hxx>

// And C++ input-output library to write the output message.
#include <iostream>

int main(void)

{

 // This creates an FFT configuration object
 CLAM::FFTConfig my_fft_config;

 // This sets some configuration parameters.
 my_fft_config.SetAudioSize(1024);
 // And this finally creates the FFT object.
 CLAM::FFT my_fft(my_fft_config);
 std::cout << my_fft.GetClassName() << std::endl;
}

If you have a look at the declaration of the FFTConfig class in the FFTConfig.hxx file (you will
find this header files in the src/Processing/Analysis directory of CLAM sources), you will
notice that it is not declared as a standard C++ class. This is because FFTConfig is a so called

25

CLAM User and development documentation

DynamicType. More information about CLAM dynamic types is provided in the specific chapter in
this document, although some useful features will be described below.

This example also shows that all the CLAM related classes are declared in the CLAM namespace.
Thus you must either include the CLAM:: prefix in each of the names, or include the following line of
code at the beginning of your program, to avoid prefixing:

using namespace CLAM;
Note: Importing a namespace globally as it is done in the previous line though is not usually a good
idea in a less than trivial project.

27 Processing Data
Instanciation of processing data objects is usually simpler that the creation of processing objects, as
shown below.

#include <Spectrum.hxx>#include <iostream> int main(){ // We just need to declare the data object CLAM::Spectrum spec; // And we can start accessing its attributes spec.SetSpectralRange(4000); if (spec.GetScale() != CLAM::EScale::eLinear) { std::cout << "This can not happen!" << std::endl << "Spectrums are linear by default!" << std::endl; }

When working with processing data, you must keep in mind that the data classes are Dynamic
Types. This allows you to add or remove data attributes at run time (which means that memory for
those attributes is allocated/freed at run time).

Both SpectralRange and Scale are dynamic attributes in the spectrum class, and as such they
can be accessed using Set and Get methods like in the sample code above.

Some complex processing data classes, like the Spectrum, provide dynamic attributes for alternative
representations of the same data. You can have the spectral samples stored as CLAM::Complex
objects (Cartesian coordinates), as CLAM::Polar objects, or as separate magnitude an phase floating
point arrays. You can add or remove these dynamic attributes to fit your application.

 // This "tags" the "Complex" dynamic attribute for addition. spec.AddComplexArray(); // This "tags" the "Polar" dynamic attribute for addition. spec.AddPolarArray(); // This "tags" the default Magnitude and phase attributes // for removal. spec.RemoveMagBuffer(); spec.RemovePhaseBuffer(); // This actually performs the previous addition/removal // operations. spec.UpdateData(); // Finally, we set the size for the spectrum object, so that all // the added attributes (ComplexArray and PolarArray, in this // example) get resized. spec.SetSize(1024);

The AddAttributeName() , RemoveAttributeName() and UpdateData() methods are the
general mechanism for adding and removing dynamic attributes to/from dynamic types.

Some complex data classes, such as the Spectrum, also provide a configuration class, which can be
used to ease the construction of multiple objects with common settings.

For example, if you know what dynamic attributes you need when you construct the object, you can
specify them in the configuration object. The SpectrumConfig has a Type attribute, which stores
a set of Boolean Flags describing which dynamic attributes in the Spectrum object are to be
"added" at construction time. This is shown in below.

 // SECOND ALTERNATIVE: creation of the spec2 object using type flags. // First we specify the desired attributes. CLAM::SpecTypeFlags flags; flags.bComplex=1; flags.bPolar=1; flags.bMagPhase=0; // Now we build the settings object CLAM::SpectrumConfig cfg2; cfg2.SetType(flags); cfg2.SetSize(1024); cfg2.SetSpectralRange(4000); // spec2 will have the same attributes as spec. // Note that when using this method the added attributes // already have the right size. CLAM::Spectrum spec2(cfg2); return 0;}

You have two different ways to set or change the value of a dynamic attribute. The easiest one is
completely overwriting the previous value. This is illustrated in below. It also introduces a new
processing data class (Audio).

#include <Audio.hxx>#include <Array.hxx>#include <iostream>#include <cmath> int main(){ // We specify this to avoid typing the CLAM:: prefix using namespace CLAM; try { // We first create and configure the data object. Audio au; au.SetSize(1024); au.SetSampleRate(8000); // Now we create a real array // We reserve a 2048 samples buffer, just in case Array<TData> array(2048); // But for now we set the logical size of the array // to just 1024 samples array.SetSize(1024); // We initialize it... int i; for (i=0; i<1024; i++) array[i]=sin(2*3.141592*10.5*i/(1024)); // And we use it to set the real attribute // in our Audio data object, by making a copy. au.SetBuffer(array); // Now, if we want, we can modify the data in the Audio object // (This does not change the original "array" object): for (i=0; i<1024; i++) au.GetBuffer()[i]*=1.5; // And, of course, we can copy it into a different array. Array<TData> array2 = au.GetBuffer(); } catch (std::exception &e) { std::cerr << e.what() << std::endl; return 1; } return 0;}

This example has also introduced the class Array<T> . This is one of the many utility template
classes defined in the library. Some of them are similar to some STL classes. Array<T> , for
example, is similar in functionality to the std::vector<T> class (the reasons for not actually using
the std vector have been thoroughly discussed and are still a matter of controversy between CLAM
developers). The attributes which contain sample chunks in both the Spectrum and the Audio
classes are Array attributes. Note that the Array<T> class is not a ProcessingData class (i.e., it
cannot be fed directly to a processing object).

In the example shown below, we can see the other way to access dynamic attributes: getting a
reference to them and modifying it. This is a bit more obscure, but more efficient. Back to the
Spectrum class, the example shows how to convert the complex samples among the different
representations (which are stored as different dynamic attributes in the Spectrum object).

26

CLAM User and development documentation

int main(){ using namespace CLAM; SpecTypeFlags flags; flags.bMagPhase=false; flags.bComplex=true; SpectrumConfig spec_cfg; spec_cfg.SetSize(513); spec_cfg.SetType(flags); Spectrum spec(spec_cfg); // Instead of creating and initialize our own array, like in // example 3, we get a reference to the uninitialized complex // array (which already has the right size) Array<Complex<TData> > &cplx = spec.GetComplexArray(); // ... and we initialize it directly. for (int i=0; i<513; i++) { cplx[i].SetReal(1.0); cplx[i].SetImag(1.0); } // We now add the Polar array attribute using the dynamic type // mechanism. spec.AddPolarArray(); spec.UpdateData(); // Beware: The following is easy to forget. // When adding an attribute with the AddXXX() method, // its size is not initialised. You must do it manually: spec.SetSize(513); // We finally force the spectrum object to set the new attribute // to the right values. The flags argument has the bComplex member // set to "true", indicating that the ComplexArray attribute is // the one from which values will be taken. spec.SynchronizeTo(flags); return 0;}

28 Usage examples
Now that we are familiar with ProcessingData classes, we can start to use Processing Objects to
perform computations on data objects. This is best shown through some examples.

The first one, in shows how to perform the FFT of an Audio object and store it in a Spectrum object.
The key parts are the calls to the Start and Do methods of the FFT.

#include"FFT.hxx"#include<iostream>#include<cmath> int main(){ int i,Size=1024; float SampleRate=8000.0; // Audio creation CLAM::Audio myaudio; myaudio.SetSize(Size); for (i=0;i<Size;i++) myaudio.GetBuffer()[i]= 0.625+0.5*sin(2.0*PI*400.0*(((float)i)/SampleRate)); // Spectrum settings CLAM::SpectrumConfig ssettings; ssettings.GetType().bMagPhase=false; ssettings.GetType().bComplex=true; ssettings.SetSize(Size/2+1); // Spectrum creation CLAM::Spectrum myspectrum(ssettings); // Processing object configuration CLAM::FFTConfig fconfig; fconfig.SetAudioSize(Size); // Processing object creation CLAM::FFT myfft(fconfig); // Processing object execution std::cout << "Running object " << myfft.GetClassName() << std::endl; // This puts the object in execution mode. myfft.Start(); // And this performs the computation. myfft.Do(myaudio,myspectrum); return 0;}

If you are wondering about the strange data sizes used in this examples, you should take in account
that the FFT processing class actually performs a real DFT. Because of spectrum symmetry, only the
first half of the spectrum is needed, so the second half is not calculated.

The next example illustrates how to use controls in a processing object. A Frequency Domain Filter
is created, and the filter characteristics are set using its input controls.

#include <FDFilterGen.hxx>#include <Spectrum.hxx> int main(){ using namespace CLAM; FDFilterGenConfig gconf; gconf.SetType(EFDFilterType::eLowPass); gconf.SetSpectralRange(4000.0); gconf.SetGain(1.0); gconf.SetStopBandSlope(12.0); FDFilterGen generator(gconf); Spectrum filter; filter.AddMagBPF(); filter.AddPhaseBPF(); filter.RemoveMagBuffer(); filter.RemovePhaseBuffer(); filter.UpdateData(); generator.Start(); generator.DoControl(2,1000.0); // Low Cutoff generator.Do(filter); return 0;}

27

CLAM User and development documentation

V Usage examples
Appart from the previous tutorial the CLAM repository also includes some examples in order to show
how can you do the basic operations with CLAM: loading audio files, playing sounds, using
Processing class... This is the list of related examples, each one of them fully detailed with comments.

Audio file Reading example
Makefile / Visual C++ project location:

build/Examples/Simple/AudioFileReading/
Sources location:

examples/AudioFileReading_example.cxx
Complexity:

Low/Medium
Keywords:

Audio file I/O, Processing usage
Pre-requisites:

Knowledge about basic Processing usage.
Description:

Shows how to load an arbitrarily formatted audio file using
CLAM utilities.

Audio file Writing example
Makefile / Visual C++ project location:

build/Examples/Simple/AudioFileWriting/
Sources location:

examples/AudioFileWriting_example.cxx
Complexity:

Low/Medium
Keywords:

Audio file I/O, Processing usage
Pre-requisites:

Knowledge about basic Processing usage.
Description:

Shows how to save an arbitrarily formatted audio file using
CLAM utilities.

Frequency domain filter usage example
Makefile / Visual C++ project location:

build/Examples/Simple/FDFilter
Sources location:

examples/FDFilterExample.cxx
Complexity:

Low
Keywords:

Processing usage, Digital Signal Processing, Frequency
Domain.

Pre-requisites:
Knowledge about basic Processing usage.

Description:
Shows how to configure and use the FDFilterGen Processing

28

CLAM User and development documentation

object.

FFT (fftw implementation) usage example
Makefile / Visual C++ project location:

build/Examples/Simple/FFT
Sources location:

examples/FFT_example.cxx
Complexity:

Low
Keywords:

FFT, Digital Signal Processing, Spectrum usage, XML,
Persistent objects.

Pre-requisites:
Basic knowledge of Processing interface.

Description:
Shows how to obtain the real Fourier transform of a given
audio signal. Also shows how to store a CLAM object i.e.
obtain a persistent copy.

Descriptor Computation Example
Makefile / Visual C++ project location:

build/Examples/Simple/DescriptorsComputation
Sources location:

examples/DescriptorComputation_example.cxx
Complexity:

Medium
Keywords:

Descriptors, Feature Extraction, Statistics
Pre-requisites:

Previous knowledge on CLAM Processing classes and the
Processing Data classes included in the repository.

Description:
A Descriptor is a special data Container that holds the
result of applying statistical computations to an existing
Processing Data. In this example the basic functionality of
descriptors and statistics is shown. Descriptors are finally
dumped into XML.

Processing Life Cycle example
Makefile / Visual C++ project location:

build/Examples/Simple/ProcessingLifeCycle
Sources location:

examples/ProcessingLifeCycle_example.cxx
Complexity:

Medium
Keywords:

Extending Processing abstract class, Processing life cycle.
Pre-requisites:

Knows about CLAM Dynamic Types.

29

CLAM User and development documentation

Description:
Shows how write a new CLAM::Processing. Tries to give some
insight into Processing life cycle - start, Configure(),
Start(), Stop(), -etc.

Object persistence through Dynamic Types
Makefile / Visual C++ project location:

build/Examples/Simple/PersistenceThroughDTs
Sources location:

examples/PersistenceThroughDTs_example.cxx
Complexity:

Medium
Keywords:

Object persistence, XML processing, XML Schema, Dynamic
Types.

Pre-requisites:
Knowledge of DynamicType’s API, Knowledge of XML and XML
Schema standards.

Description:
This example shows how to obtain a persistent copy of an
object, encoded as a well-formed, valid, XML document.

Visualization Module Plots: single function plot
Makefile / Visual C++ project location:

build/Examples/Simple/SinglePlot_1
Sources location:

examples/SinglePlot_example.cxx
Complexity:

Low
Keywords:

CLAM GUI services, simple data visualization.
Pre-requisites:

Familiarity with CLAM::Array and CLAM::BPF.
Description:

This example shows how to plot on the screen some data object
part of a simple DSP application.

Visualization Module Plots: multiple function plot
Makefile / Visual C++ project location:

build/Examples/Simples/MultiPlot
Sources location:

examples/MultiPlot_example.cxx
Complexity:

Low
Keywords:

CLAM GUI services, simple data visualization.
Pre-requisites:

Familiarity with CLAM::Array and CLAM::BPF. It is recommended
to take a look first on the single function plotting example.

30

CLAM User and development documentation

Description:
This example shows how to plot on the screen some data object
part of a CLAM-based DSP application, as well as combining
several functions in the same plot window.

LPC usage example
Makefile / Visual C++ project location:

build/Examples/LPC
Sources location:

examples/LPCAnalysis_example.cxx
Complexity:

Medium
Keywords:

Linear Prediction Coding, Fourier Transform, multiple
function plotting.

Pre-requisites:
Notions of DSP analysis techniques.

Description:
This example shows how to analyze a given audio signal using
the LPC and associated ProcessingData’s. Also shows to
compare the approximation achieved by the LPC algorithm, and
the one achieved by Fourier Transform.

A simple threaded speech analysis application
Makefile / Visual C++ project location:

build/Examples/Simple/ThreadedProcessing
Sources location:

example/ThreadedProcessing_example.cxx
Complexity:

Medium
Keywords:

Concurrent programming, threads, GUI
Pre-requisites:

Notions about concurrent programming issues, some background
in signal processing, some familiarity with most usual CLAM
objects (Processings, etc.)

Description:
Unfinished example - growing overly complex.

Playing a WAVE file
Makefile / Visual C++ project location:

build/Examples/Simple/FilePlayback
Sources location:

examples/FilePlayback_example.cxx
Complexity:

Low
Keywords:

Audio device I/O
Pre-requisites:

31

CLAM User and development documentation

Minimum familiarity with CLAM objects such as Processing and
ProcessingData.

Description:
This examples shows how to load a WAVE file and play it with
your soundcard.

SDIF I/O, Segments and plots
Makefile / Visual C++ project location:

build/Examples/Simple/SDIF_And_Segment
Sources location:

examples/SDIF_And_Segment_example.cxx
Complexity:

Medium
Keywords:

DIF, CLAM Segment, SMS Synthesis process, Audio Device I/O.
Pre-requisites:

Basic knowledge of Processing objects interface, basic
knowledge of SMS Analysis algorithm byproducts.

Description:
Shows how to restore a CLAM::Segment object stored into a
SDIF file, and inspect visually its contents.

Using CLAM Networks
Makefile / Visual C++ project location:

build/Examples/Simple/NetworkUsage
Sources location:

examples/NetworkUsage_example.cxx
Complexity:

Low
Keywords:

CLAM Network, Flow Control, Supervised Mode.
Pre-requisites:

Knowledge of Processing objects interface.
Description:

Shows how to use the CLAM Network Processing interface to
create and connect easily CLAM Processings.

Storing and loading CLAM Networks
Makefile / Visual C++ project location:

build/Examples/Simple/NetworkPersistence
Sources location:

examples/NetworkPersistence_example.cxx
Complexity:

Medium
Keywords:

CLAM Network, Flow Control, Supervised Mode, Serialization,
Audio File I/O, Audio Device I/O

Pre-requisites:
Basic knowledge of Processing objects interface, basic

32

CLAM User and development documentation

knowledge of serialization module, knowledge about using CLAM
Processing Networks.

Description:
Shows how to store a CLAM::Network to a xml file, restoring
its definition to another network. It show how to load and
store audio files and play them, too.

How to create and use a Processing with Controls
Makefile / Visual C++ project location:

build/Examples/Simple/Controls
Sources location:

examples/ProcessingObject_controls_example.cxx
Complexity:

Medium
Keywords:

Processing, Controls
Pre-requisites:

Knowledge of Processing objects interface and some previous
reading on what CLAM controls are and how they are supposed
to behave.

Description:
A Processing class with different kinds of input and output
controls is declared. Then it is used by illustrating how
controls are connected, modified and read.

How to create a Processing with Ports and Controls and use it
Makefile / Visual C++ project location:

build/Examples/Simple/PortsAndControlUsage
Sources location:

examples/PortsAndControlUsageExample/
Complexity:

High
Keywords:

Flow Control, Audio Device I/O, Extending Processing abstract
class, Processing life cycle, Ports, Controls, Nodes

Pre-requisites:
Advanced knowledge of Processing objects interface, knowledge
of flow control and nodes system.

Description:
Shows how to create a custom processing class with ports and
controls interface, in order to use it with another
processings creating an small processing chain.

Creating and using a CLAM Composite Processing Object
Makefile / Visual C++ project location:

build/Examples/Simple/POComposite
Sources location:

examples/POCompositeExample.cxx
Complexity:

Medium
Keywords:

33

CLAM User and development documentation

Composite, Children
Pre-requisites:

Good knowledge of Processing classes and their whole
interface.

Description:
This example illustrates how to create a static composition
of Processing objects using the Processing Composite
construction available in CLAM. A "big" Processing class is
declared by composing with basic Processing classes. Then
this class is used to show how it interfaces and behaves.

Creating a Basic Audio Application using the CLAM Application classes
Makefile / Visual C++ project location:

build/Examples/Simple/AudioApplication
Sources location:

examples/AudioApplicationExample.cxx
Complexity:

Low
Keywords:

Audio I/O, Application, Oscillators
Pre-requisites:

Basic knowledge of Processing objects interface and audio IO
in CLAM

Description:
Shows how to develop a basic audio application using the CLAM
application classes. For doing so a basic Oscillator is used
and its output is sent to the soundcard.

Converting a MIDI file into an XML Melody
Makefile / Visual C++ project location:

build/Examples/Simple/MIDI2XML
Sources location:

examples/MIDI2XMLExample.cxx
Complexity:

High
Keywords:

MIDI, XML, Data, Controls
Pre-requisites:

This example may be used as is without not much previous
knowledge. But in order to understand its internals a good
knowledge on CLAM Processing classes, including controls and
ports, is necessary. Prior basic knowledge on the MIDI
protocol is also necessary.

Description:
This examples batch processes all the .mid files contained in
a given folder (and subfolders recursively) and converts them
into xml files. In order to do the input MIDI controls are
converted to data and then dumped into XML using CLAM
infrastructure. This example was implemented after a question
posted to the MIR (Music Information Retrieval) mailing list.

Creating a MIDI Synthesizer

34

CLAM User and development documentation

Makefile / Visual C++ project location:
build/Examples/MIDISynthesizer

Sources location:
examples/MIDI_Synthesizer_Example.cxx

Complexity:
High

Keywords:
MIDI, Synthesizer, Instrument, Controls

Pre-requisites:
Previous knowledge on MIDI and additive synthesis may help.
Previous knowledge on CLAM Processing classes and Controls is
also required.

Description:
This example implements a basic additive synthesizer with
ADSR control. The synthesizer is controlled from incoming
MIDI messages.

Inputing and outputing MIDI messages
Makefile / Visual C++ project location:

build/Examples/Simple/MIDIIO
Sources location:

examples/MIDIIOExample.cxx
Complexity:

Medium
Keywords:

MIDI, Controls
Pre-requisites:

Previous knowledge on the MIDI protocol may help but is not
strictly necessary. Some prior knowledge on CLAM Processing
classes and controls is required.

Description:
A basic input MIDI stream is opened and the input events are
sent on the output.

Implementing a spectral analysis
Makefile / Visual C++ project location:

build/Examples/Simple/SpectralAnalysis
Sources location:

examples/SpectralAnalysis_example.cxx
Complexity:

High
Keywords:

Spectral Analysis, FFT, spectrum, Composite
Pre-requisites:

Previous knowledge on the basic concepts in the framework
(Processing objects, Processing Data objects...) from a
user’s perspective. Some previous knowledge on signal
processing might also help.

Description:
A spectral analysis scheme is implemented. This schem is
based on the STFT and includes windowing, overlapping and

35

CLAM User and development documentation

zero padding.As a matter of fact this example includes much
of the functionality in the SMSTools, but it is more isolated and
therefore easy to read/understand

Implementing a spectral peak detection algorithm
Makefile / Visual C++ project location:

build/Examples/Simple/SpectralPeakDetect
Sources location:

examples/SpectralPeakDetect_example.cxx
Complexity:

Medium
Keywords:

Spectral Analysis, spectrum, Spectral Peaks, Composite
Pre-requisites:

Previous knowledge on the basic concepts in the framework
(Processing objects, Processing Data objects...) from a
user’s perspective. Some previous knowledge on signal
processing might also help. As a matter of fact, before
reading this example it is recommended that you first
understand the previous Spectral Analysis example.

Description:
Using the output from a previously performed spectral
analysis, the peak detection algorithm in the CLAM repository
is used in order to find the most prominent peaks in the
spectrum.

Using the Spectrum class
Makefile / Visual C++ project location:

build/Examples/Simple/Spectrum
Sources location:

examples/Spectrum_example.cxx
Complexity:

Medium
Keywords:

Spectrum, ProcessingData, Dynamic Types
Pre-requisites:

Previous knowledge and experience with Dynamic Types and
basic Processing Data classes is recommended.

Description:
The Spectrum class is the most complex Processing class in
CLAM and this example gives a thorough insight on its
interface and usage.

36

CLAM User and development documentation

VI Dynamic Types

29 Scope
This section is addressed to the users that want to learn the basics aspects and usage of Dynamic Types
(DTs for short). You may also find a section devoted to Dynamic Types in the "Developers" part of
this document. This latter is aimed to explain how to create new classes that derive from the base DT,
and goes into some details regarding their functionality.

30 Why Dynamic Types ?
Though it might be a quite controversial issue, there are three main reasons for the decision of
implementing and using DTs in CLAM.

1. There is a need in some core classes of the library, of working with types with a large number of
attributes, i.e.: the descriptors of audio segments, that in some cases only a small subset is needed,
and so could represent a waste of space if its memory is always allocated. DT can instantiate and
de-instantiate attributes at run-time, and do it in such a way that its interface is the same as if they
where C++ normal attributes.

2. We want support for working with hierarchic or tree structures. That means not only composition
of DTs but also aggregates of them (lists, vectors, etc. of DTs). With such compositions of DTs,
we can use assignation, and two clone member functions: ShallowCopy () and DeepCopy(), the
good thing is that they come free; we don’t need to write these members in none of the DT
concrete classes.

3. We obtain introspection of each DT object. That is the ability to know the name and type of each
dynamic attribute, to iterate through theses attributes, of having some type specific handlers for
each. One clear application of introspection is storage support for loading from, and storing to a
file, of a tree of DTs. Of course all this is implemented generically, so appears transparent to the
user. At this point we have XML support implemented. Other profits we take from introspection in
DT are debugging aids.

31 Where can DT be found within the CLAM library?
All classes deriving from ProcessingData base class are DT. The concrete ProcessingConfig classes as
well as the ProcessingDataConfig classes are also DT.

32 Declaring a DT
When we say that dynamic attributes can be instantiated at run time, we mean that we can do so with
the previously declared dynamic attributes. Let’s see an example. Imagine we want to model a musical
note with a DT. We declare it like this:

class Note : public DynamicType{public: DYNAMIC_TYPE (Note, 5) DYN_ATTRIBUTE (0, public, float, Pitch) DYN_ATTRIBUTE (1, public, unsigned, NSines) DYN_ATTRIBUTE (2, public, ADSR, Envolvent) DYN_CONTAINER_ATTRIBUTE (3, public, std::list<Sine>, Sines, harmonic) DYN_ATTRIBUTE (4, private, Audio, Wave) };

This is a macro-based declaration, right now there are three different macros: DYNAMIC_TYPE for
expanding the concrete DT constructors, DYN_ATTRIBUTE for declaring each dynamic attribute and
DYN_CONTAINER_ATTRIBUTE for declaring any STL interface compliant container.

We will now explain these three more in depth:

37

CLAM User and development documentation

1. DYNAMIC_TYPE this macro expands the default constructor of the concrete DT being declared.
The first parameter is the total number of dynamic attributes, and the second one the class name.

If the writer of a DT derived class sees the need of writing a customized default constructor or other
constructors it can be done using the initializers. See section 82.

2. DYN_ATTRIBUTE it is used to declare a dynamic attribute. It has four parameters, the first one is
the attribute order (needed for technical reasons of the DT implementation), the second one is the
accessibility (public, protected or private) the third one is the type: it can be any C++ valid type
including typedef definitions but not references (& finished) or pointers (* finished). If you still
think you need pointers as dynamic attributes then read the pointers section (section 85).

The forth and last parameter is the attribute name, it is important to begin in upper-case because this
name (let’s call it XXX) will be used to form the attribute accessors GetXXX() and SetXXX(.) ,
thus the XXX must start in upper-case, following the coding style of the library (See chapter XVI)

Returning to the example above, each DYN_ATTRIBUTE macro will expand a set of usable
methods:

float& GetPitch(), void SetPitch(const float&),void AddPitch(), void RemovePitch(), bool HasPitch()void StorePitch(Storage&) const, bool LoadPitch(Storage&)

Of course GetPitch and SetPitch are the usual accessors to the data. AddPitch and
RemovePitch, combined with UpdateData that will be explained latter on, will instantiate and
de-instantiate the attribute. HasPitch returns whether Pitch is instantiated at this moment. Finally
StorePitch and LoadPitch are for storage purposes, and will be explained in section 35

3. DYN_CONTAINER_ATTR: The purpose of this macro is to give storage (only XML by now)
support to attributes declared as containers of objects. For providing this service, we need that
container to fulfill the STL container interface, so all the STL collection of containers is usable. This
macro has five parameters, one more that DYN_ATTRIBUTE: the attribute numeration, accessibility,
the type, the name of the attribute and finally the new one: the label of each contained element that
will be stored.

33 Basic usage
Once, the concrete DT Note has been declared, we can use it like this:

Note myNote; // create an instance of the DT Note

Now myNote, have no attribute instanciate. We can activate attributes this way:

myNote.AddPitch(); myNote.AddNSines(); myNote.AddSines();

Or in the case that we want all of them, it is better to use AddAll . (This method is not macro
generated as AddPitch , but is a DT member available in any concrete DT.
)

myNote.AddAll();

As this kind of operations require memory management, we want to update the data, with its
possible reallocations only once for every modification of the DT shape or structure (which can imply
many individual adds and removes). We’ll use the DynamicType UpdateData operation for that
purpose:

std::cout << myNote.HasPitch() // writes out: ’false’myNote.UpdateData();std::cout << myNote.HasPitch() // writes out: ’true’

And now all the instantiated attributes can be accessed as usual, using the accessors GetXXX and
SetXXX . For example:

38

CLAM User and development documentation

myNote.SetNSines(10);myNote.SetPitch(440); // lets use some std::list operations:myNote.GetSines().push_back(440).push_back(440*2);myNote.GetSines().push_back(440*3).push_back(440*4); // etc. int i=myNote.GetPitch(); // error! GetPitch() returns floatint j=myNote.GetNSines(); // ok.

More about adding, removing and updating attributes:
It is important to learn the exact behaviour of adding and removing DT attributes. It can be summed

up to three ideas:
• GetXXX and SetXXX operations over non-instantiated attributes will rise an exception

ErrDynamicType . So these operations should be protected with an if (HasXXX()) clause in places
of the code where there is no safety about the presence of XXX.

• Besides, AddXXX and RemoveXXX can be used safely (don’t rise any exception). Basically what
they do is set and unset internal flags. For example, if the attribute Pitch exists and we do
RemovePitch() it will be marked as "removed" (waiting for the UpdateData() to perform the
actual removal). Now, if before updating data we call AddPitch() , then it detects the mark and the
effect is just to unset this flag. If we insist with another AddPitch() it will have no effect (and no
flag will be set), because it is allready instantiated. The case of adding a non-instantiated attribute is
symmetric as the case of removing an instantiated one.

• UpdateData() is a safe and efficient operation: with safe what we mean is that it has no effect
(and doesn’t rise exceptions) in case that the DT needs no memory update, and it is efficient in the
sense that the checking for changes in the dynamic shape doesn’t involve any traversal of the attributes
but only cheking a global flag. Moreover, UpdataData() returns a boolean that says if it has been
necessary to update the data. Sometimes it is very useful do things such as :

// here we don’t know if Pitch exist.myNote.AddPitch();if (myNote.UpdateData()) { // yes, it existed // ...} else { // no, it didn’t was there till now. // ...}

34 Prototypes and copy constructors
It’s been said that a the dynamic shape of a DT is the set of instantiated attributes. The description of
this shape is stored in a table and can be shared between various DTs. Thus this brings us to the idea of
prototypes and creating objects by cloning the dynamic shape of others, this is exactly how the default
copy constructor works.

Note n1(myNote), n2(myNote), n3(myNote), n4(myNote);

Now n1, n2, n3 and n4 all share both static information of their type and the dynamic shape
information, and we say that myNote is their prototype, or that they all share the same prototype. It is
important to notice that this happens even if the prototype (myNote) doesn’t have its data updated. If
we decide to change the shape of one of these objects, i.e. we want to add new attributes to n4, this
operation will automatically create a new prototype and so a new dynamic shape as the next figure
shows:

39

CLAM User and development documentation

n1: Note n1: Note n1: Note n1: Note n1: Note

D shape 1

description
Dynamic

D shape 1

description
Dynamic

"Pitch"
"Nsines"

type
"float"
"int"

4
4

Name byteSize

DynamicType

Note

Static type description table:

Objects:

Classes:

Of course, the copy constructor also copies the data of each instantiated attribute from the source
object into the new object. This copy is made using the corresponding copy constructor. This means
that the copy constructor makes a so-called "deep copy" (that means recursives copies of its
sub-elements) of any composition of DT and aggregates (i.e. using STL containers) of DTs.

More on copy constructors (i.e. with the shareMemory flag) can be learnt directly from the
javadoc source documentation.

35 Storing and Loading DTs
This section only explores a feature that is particular to the Dynamic Types: debug-time information.
If you should need more details about how to store and load DT from and to XML please refer to
chapter IX.

35.1 How to explore a DT at debug time
Since the dynamic data of a DT is not stored as regular C++ attributes, it might be difficult to explore
in the usual way from the debugger. Thus we have provided the DT base class with a Debug()
method that can be called from the debugger environment and basically does two things:

40

CLAM User and development documentation

writes information regarding internal parameters and the dynamic shape of the object to the
standard output, and

writes out a ’Debug.xml’ file (placed at the working directory) with the XML content of the object.

Note that the XML load and store, including storing the debug file, will only work if the CLAM
macro CLAM_USE_XML was set when compiling.

41

CLAM User and development documentation

VII Processing classes

36 Introduction
This chapter gives a short introduction to CLAM library development issues to those who intend to
write a new processing class. The chapter assumes certain familiarity with the use of the library, so if
you are completely new to it, you might want to read the usage tutorial first.

The rest of this section will give an overview to the library class hierarchies. Section 37 gives a brief
overview of the main tasks you will need to perform while implementing a processing class. In section
38 the construction and configuration interface of processing classes will be described. Section 39 will
describe their execution interface. Finally, the following sections will summarize some
implementation details to keep in mind while writing a processing class, especially exception handling
and code testing.

36.1 Class hierarchies
When making a new processing class, it is important to be familiar from the beginning with the
Processing and the ProcessingConfig classes hierarchies shown in figure f 5. This figure
shows a small collection of the available processing classes, and their related configuration classes.

42

CLAM User and development documentation

Figure 5: Processing and Configuration classes hierarchy

As you can see in the figure, there is a base Processing class from which all other processing
classes must derive. This class provides an abstract interface for processing classes. The class is
defined in the following source file:

$(TOP)/src/Processing/Processing.hxx
You should also be familiar with ProcessingData classes, at least with the fundamental ones.

They are described in a different chapter of this document.
You may never need to create a new ProcessingData class, but you will have to know how to

use them in order to write a new Processing class.

43

CLAM User and development documentation

36.2 Coding style and philosophy
If your class will be part of the CLAM library, you should write it keeping in mind these objectives, in
suggested order of priority.

Safety.
Your class should work as expected, contain as few bugs as possible, and should detect as often as

possible when it is not being used properly. More about this in section 43 and section 44 .
Clarity.
Your code should be easy to understand. Reading it should give a clear idea of the algorithms that

are being used.
Efficiency.
Your class should work fast. This is, after all, why are we using C++ instead of a more sane

language.
Once you have chosen an efficient algorithm, it is usually not a good idea to think too much about

code efficiency while you are writing your class. It is usually hard to figure out what will be the real
bottleneck in your code until you run a profile on it, and you can not do that until it is finished and
working correctly.

Also, clearly written code is easier to modify later, and thus to optimize. If you obfuscate your code
trying to avoid some imaginary efficiency problem, and you later find that efficiency problems are
caused by a different reason, it will be harder to fix the problem. If your code is clear, optimizing it
later will usually be an easy task.

37 Overview of the processing class implementation tasks
The mayor tasks you need to undertake when writing a new processing class are briefly described
below. All of them will be further described in the next sections.

37.1 Declaring the processing interface attributes
Ports

: Your processing class will have a set of inputs and outputs. You should declare the related Port
attributes in it.

Warning: Ports, although recommended, are still not mandatory so you may find classes in the
repository that still make no use of Ports. These classes though will necessarily be re-factored soon
when the Ports interface becomes mandatory

Controls
: If your class is to have input or output Controls, you also have to declare the related Control

attributes in it (section 40). Note that you must declare as a control any attribute that is supposed to be
modified while the Processing object is running.

37.2 Implementing the construction mechanism
This requires writing a helper configuration class and writing your processing class constructors, in
which all the non-configuration related initialization can be performed.

37.3 Implementing the configuration mechanism
Processing objects reconfiguration is performed using the Configure() method provided in the
Processing base class. You don’t have to write this method. But you do need to write a
ConcreteConfigure() method that will be called from the Configure() method in the base
class (more in section 38.3). This method must do all the initialization stuff dependent on

44

CLAM User and development documentation

configuration parameters.

37.4 Implementing the execution methods
You have to provide a Do() method that reads the data in the ports and runs a processing ‘‘cycle’’ on
it (section 39.2).

You may also write a Do(...) method with the data arguments specific to your processing class.
This is usually the method where the actual processing algorithm is implemented.

37.5 Implementing other optional standard methods
Processing object execution state (section 39.1) is controlled using the Start() and Stop()
methods implemented in the Processing base class. You can not overload these methods.

If objects of your class need to perform any special operations at start or stop time, you can overload
the ConcreteStart() and ConcreteStop() methods, which will be called from the base class
Start() and Stop() methods when the user calls them. See section 40.3 to see what kind of
operations need to be done in your ConcreteStart and ConcreteStop methods.

37.6 Writing the tests
You should always write a ‘‘class test’’ program for your processing class, the why and how are
explained in section 44.

38 Object construction and configuration interface
The most important item related to object construction and configuration are the processing
configuration classes, which will be described in section 38.1. Section 38.2 will describe how to write
the Processing constructors, and section 38.3 will describe how Processing objects can be
reconfigured, and what needs to be implemented in the concrete classes to support this mechanism.

38.1 Processing configuration classes
As figure f 5 suggested, each processing class requires a related configuration class.

38.1.1 The role of processing configuration classes

The role of the configuration class is to store all the necessary information to configure an object of the
related Processing class. In fact, configuration classes may be described as a place-holder for
parameters which would otherwise be specified as individual arguments in the processing class
constructors.

Processing classes must provide both a constructor and a ConcreteConfigure method taking
an object of this configuration class as argument (more about this latter, in section 38.2 and section
38.3.

Configuration classes are implemented as dynamic types that store collections of configuration
attributes (implemented as dynamic attributes).

When writing a configuration class, you will usually include configuration attributes such as:

Number of inputs or outputs.
Values for parameters of the processing algorithm that the user may want to specify, and which
will be fixed during the execution.
Initial values for input control parameters (whenever they are needed, see section 40).

45

CLAM User and development documentation

It is important to keep in mind that the configuration mechanism can not be used to change
parameters of a processing object during processing execution, only during an initial configuration
stage (see section 39.1 for more details on this). Your processing class should provide input controls
(section 40) for run-time parameter changes (a configuration attribute can be used to set an initial
value for those controls, though).

38.1.2 Configuration class implementation

Processing configuration classes must derive from the base ProcessingConfig class, defined in
the file

src/Processing/Processing.hxx

The name of the configuration class should be the same as the name of the processing object, adding
the Config suffix.

In some cases several processing classes may share the same configuration class. The FFT is a clear
example of this. For example, figure f 5 shows that several FFT classes exist for different algorithm
implementations, but they all derive from a common FFT_base class, and they share a common
configuration class: FFTConfig.

In other words: you will have to write a Configuration class for your processing class, unless the
latter is a different implementation of an existent processing class, and may share its existent
configuration class.

You will typically place the declaration of both classes (configuration and processing) in the same
header file. This file should have the same name as the processing class.

Once you have written your configuration class, you can write the declaration of your processing
class constructors and configuration methods.

38.2 Processing constructors
Processing classes must provide two constructors: a default constructor and a constructor with the
configuration class as its argument type. In most classes they will look just like this (explicit member
constructor calls are omitted):

SpectrumProduct::SpectrumProduct(){ Configure(SpecProductConfig());}SpectrumProduct::SpectrumProduct(const SpecProductConfig &c){ Configure(c);}

The Configure method called inside the constructors is implemented in the base class, and is
described in section 38.3.

You will usually need to include some member constructor calls from your constructors. If you are
using controls, for example, you should call the constructors of the control attributes, as described in
section 40

You may need to perform more tasks in the constructor, but most of them will probably be better
implemented in your ConcreteConfigure method (see below), which will be automatically called
from Configure .

You should not try to provide a copy constructor for a processing object. It will not work well3 .

38.3 Configuration methods
Once a processing object is instantiated, it can be (re)configured using the Configure method,
implemented in the Processing base class4 . This method will check that the object can be actually
reconfigured (i.e., that the object is not ‘‘running’’) and will call the concrete configuration method
(which you have to write), ConcreteConfigure() , in the concrete processing class.

46

CLAM User and development documentation

These two methods (The Configure method and the concrete configuration method) are declared in
the base class as follows:

protected: virtual bool ConcreteConfigure(const ProcessingConfig&) = 0;public: bool Configure(const ProcessingConfig&) throw(ErrProcessingObj);

So you only have to implement a protected or private ConcreteConfigure method in your new
processing class, and you may forget about the Configure method (although it is useful to call it
from the constructors, as described above).

Additionally, you need to provide a configuration accessor:

const ProcessingConfig &GetConfig()const;

This method must return a reference to a configuration object holding the current object
configuration. The easiest way to do this is to store a copy of the object passed to the
ConcreteConfigure method, so GetConfig only has to return it.

You should keep in mind while writing other processing class parts that the configuration attribute
(if you keep it) must store only initial state of the object. The object should not change configuration
parameters itself. This means that the object returned by the GetConfig method must show the latest
values passed either to the constructor or to the Configure method.

39 Object execution interface

39.1 Execution states
Processing objects are in a certain execution state at any moment. This is best shown in a state
diagram, figure f 6. The object is initially in the Unconfigured state.

47

CLAM User and development documentation

Figure 6: Processing Objects execution states.

All the methods shown in the state diagram, except the Do() method are implemented in the
Processing base class. These are briefly described below. Note that all the state transitions are
done via these methods; the state variable is also kept in the base class, so you do not need to worry
about execution state management when implementing a new processing class.

bool Configure(ProcessingCofig&) This puts the object in ready mode, if
configuration is correct. See section 38.3 for more details.
bool Start(void) This puts the object in execution mode. This method must be called before
the first call to any Do() method. Calling Do() before calling Start() may throw an
exception.
Once the object is running (i.e. in execution mode), it can not be reconfigured. Calling
Configure() in execution mode will throw an exception.
bool Stop(void) This puts the object out of execution mode.
ExecState GetExecState() . This method returns the current execution state of the object.
This may be used for debugging or to keep tack of the object state in the application.

You may need to perform some specific operations in your class at certain state transitions. There
are several virtual methods that you can override to do so, and which are described in the following
table:

concrete method called from mandatory

ConcreteConfigure(ProcessingConfig&) Configure(ProcessingConfig&) yes

ConcreteStart() Start() no

ConcreteStop() Stop() no

48

CLAM User and development documentation

Note that the last two methods are very tied to supervised mode operation.

39.2 Execution methods
The main execution methods are the Do methods. They are the ones which actually perform the
processing action.

There are two different kinds of Do methods:

A Do(void) method, with no arguments. This operation is declared in the Processing base class
and is therefore called "generic" Do. In future releases of CLAM this will become the standard
way of using processing objects. This method is related to the input and output ports that have
been previously declared. As already commented although you may still find some Processing
classes in the repository that do not declare Ports and therefore provide an empty implementation
of this method, you are encouraged to provide one so your Processing class can be used from
within a Network.
Do(...) methods taking data objects as arguments and called "concrete" Do’s. They will have
some input data arguments first, and then some output data arguments. A typical processing class
will need a single Do method of this kind. These methods are discussed in section 39.3

Both kinds of Do() operations work in the same way: they read a certain number of data objects
from each of the inputs, and write a certain number of data objects to each of the outputs. The
difference is that the concrete Do() method takes this data objects as arguments (and therefore does
not use ports), while the generic Do() operation has no arguments, and accesses the Data through the
Ports objects.

figure f 7 shows a sequence diagram for the execution of a processing object with a single input and
a single output.

49

CLAM User and development documentation

Figure 7: Execution sequence

39.3 Object execution not using ports
Processing objects must provide a Do method which takes the input and the output objects as its
arguments. You may provide several Do methods for different object configurations (such as different
sets of active inputs and outputs).

You should carefully check that the dynamic attributes you need are instantiated in the input and
output objects passed to a Do.

A good approach to this is having some kind of prototype state variable which is updated when
SetPrototypes is called. Your Do methods can then use a switch statement to choose the
processing code to execute.

You can, for example, do a fast execution when the inputs and the outputs have the attributes most
convenient for your computations, and a slow execution for other cases, in which you perform
previous and subsequent data conversions.

In this slow cases, if the data classes you are handling provide attribute conversion routines, you can
usually just add the attribute you need to the data object, and call a proper conversion routine to update
it. See the FFT_rfftw code for an example of this.

50

CLAM User and development documentation

39.3.1 Do method argument conventions

1. You should clearly document the Do methods arguments. You should use Java-Doc comments in
your code for this.

2. Inputs go first and should be "const", outputs go last.
3. By default, it is assumed that a Processing can process inplace, thus it is possible to pass the same

reference to input and output (of course, if the data type is the same). If the Processing you
implement cannot process inplace you should override the CanProcessInplace method,
return false and document this fact.

4. You should take both input and outputs as references whenever it is possible.
5. Inside a Processing, you should never assume ownership of objects passed as inputs. You should

not delete them.
6. You should avoid passing as outputs data objects which you have created. If you do so, document

it clearly, explaining why you do so, and how to handle them, specially their lifetime, or who
should destroy them.

7. Variable number of arguments must be handled passing a reference to an array of pointers
(typically as a reference to a pointer). You can implement an extra Do method which takes a
reference to an array of objects instead, to avoid dereferences (you must anyway provide the
pointers version, because the user may not always have an array of objects handy).

8. If the number of arguments is variable, you must clearly document this fact, and provide methods
to get this number.

40 Controls
Some processing classes need to allow external entities to change the behavior of the objects
asynchronously during their execution. Input controls are the mechanism to perform this kind of run
time changes.

Also, a processing class may be used to detect some kind of event. Output controls are the way to
make notifications on asynchronous events.

An application can connect output controls from some processing objects to the input control of
others.

When we use the ‘‘asynchronous’’ word here, we mean that control values do not flow with a given
rate, as data does.

In CLAM, control values are floating point numbers.

40.1 Input Controls
There are two different mechanism to implement input controls. Controls using the first mechanism
simply store a value, and allow an externally connected output control to change this value. These
controls are described in section 40.1.1.

For the second mechanism, you have to write a special method in your class, a call-back method
which will be called whenever a new value is sent to the input control. This mechanism is described in
section 40.1.2

40.1.1 Regular input controls

To use a regular input control, you need to

51

CLAM User and development documentation

1. Declare an InControl attribute in your class with a descriptive name. For example, if you have
a couple of input controls with pitch and amplitude values, you should declare them like:

 InControl mInPitch; InControl mInAmplitude;

2. Call the InControl constructors from your processing class constructors. They take two
arguments: the control textual name, and a pointer to the processing object containing the control.
For example, the constructor of a processing class called MyClass containing two input controls
would look something like:

 MyClass(const MyClassConfig &c) : mInPitch("Pitch", this), mInAmplitude("Amplitude", this) { Configure(c); }

3. Give an initial value to the control. You should do this in the ConcreteStart() method of
your class. Input controls provide a DoControl(value) method to change the value.

40.1.2 Input controls with call-back method

In some cases you may want to have a call-back method executed each time an input control changes
its value. Some reasons for this might be:

You may want to send some output controls in some situations when an input controls arrives.
You may want to keep track of multiple changes in a control value between two consecutive calls
to your Do() method.
If you have many controls, you may want to avoid checking all of them for changes each time the
Do() method is called.

In order to use this call-back mechanism, you have to:

1. Declare your control attributes to be of type InControlTmpl<MyClass> (where MyClass is
the name of your processing class). Following the example in previous section, you would have:

 InControlTmpl<MyProcObj> mInPitch; InControlTmpl<MyProcObj> mInAmplitude;

2. Define the call-back method(s) in your class, which must take a single argument of type
TControlData . For example

 int InPitchControlCB(TControlData val); int InAmplitudeControlCB(TControlData val);

3. Call the InControlTmpl constructors from your processing class constructors. They take three
arguments: the control textual name, a pointer to the processing object containing the control, and
the address of the call-back method. Following the example:

MyClass(const MyClassConfig &c): mInPitch("Pitch", this, &MyClass::InPitchControlCB), mInAmplitude("Amplitude", &MyClass::InAmplitudeControlCB)){ Configure(c);}

40.2 Output Controls
You add output controls to your class in the same way you add regular input controls, but taking into
account that the name of the control class is now OutControl . So, you need to:

1. Declare the OutControl attributes in your class.
2. Call their constructor in the initializer lists of yours.

Now you can send values through the output control. You will usually do it from time to time in
your Do() method, using the SendControl(TControlData val) method of the
OutControl class.

52

CLAM User and development documentation

40.3 Controls initialization
Input controls must be initialized in the ConcreteStart() method. If the initial value of a control
should be chosen by the user, a configuration attribute can be provided in the configuration class for
this task.

41 Internal object state
‘‘Object state’’ usually refers to the specific values that the attributes of this object have in a given
moment of time.

For processing objects, it is useful to consider two different kinds of attributes, and thus two
different kinds of ‘‘state’’:

Configuration related attributes.
Execution related attributes.

Initialization, usage and destruction of these attributes should be done in different ways, as
described below.

41.1 Configuration related attributes
The first ones would be attributes which may only change when the processing object configuration is
changed (i.e., when the Configure() method is called).

For example, if your configuration class includes an attribute which defines the size of some internal
buffers in your processing objects, you should create or resize these internal buffers when the
ConcreteConfigure() method is called, instead of doing so directly in the class constructors.

41.2 Execution related attributes
Some processing classes may need to keep internal computed values between different calls to Do
methods. This is usually done using normal private class members.

Some examples of this are:

Keeping track of time,
Performing some kind of integration/accumulation of the input.
Performing some kind of differential operation for which values from previous execution calls are
needed.

Sometimes it may be a good idea to provide a public accessor (getter) method to some of these
internal values, so that applications using the class can easily implement some run time debugging.
But it is usually a better idea to provide this access in the form of input or output Controls.

41.2.1 Initialization

The initialization of internal state attributes related to object execution (such as execution counts,
accumulated values, time references, etc) must be performed in the ConcreteStart() method.

Also, if you want to liberate some resources when the object stops being run, you can implement
this in the ConcreteStop() method.

53

CLAM User and development documentation

42 Processing Composite
Sometimes you need to write a large processing object which uses other processing objects internally
to perform some parts of the algorithm.

There is a standard way to do this:

1. You should derive your class from ProcessingComposite instead of deriving it directly from
Processing .

2. You should configure your children processing objects, calling their Configure method in the
ConcreteConfigure method.

See the file examples/POCompositeExample.cxx for more details.

43 Exception Handling
Your classes may some times throw exceptions. This will usually happen in two circumstances:

1. When some consistency checks inside your code fails (section 77.3).
2. When some external run time problem happen (a file which does not exist, a device which refuses

to be opened, etc). This is discussed in section 79.2.

43.1 Assertions
As you probably remember from section 36.2, one of the main self imposed requirements in the
CLAM library is code safety.

One of the best tools to achieve this is using ‘‘assertions’’ (condition checks) in your code to check
that things are like they are supposed to be.

Assertions are a general mechanism inside the CLAM library, and are thus also discussed
elsewhere. But it is worth making some comments about how they should be used in processing
classes.

43.1.1 Where to use assertions

There are mainly two kinds of assertions:

1. Internal consistency checks about the state of your class. These are usually conditions which
should NEVER fail, and which would mean that something is really wrong in your class. They are
useful for you as a developer, to find bugs in your own code.

2. External precondition checks. Class methods usually expect some restrictions in they arguments,
or in the order in which they will be called. These restrictions should be documented, but someone
using your class may make a mistake and misuse your class. ‘‘External’’ assertions make checks
on the values of arguments provided by the user, or check if the internal state of the class is
adequate to perform an operation requested by the user.

A clear example of this kind of check is testing the value of an index provided by the user to see if
fits the size of a data array.

54

CLAM User and development documentation

43.1.2 How to make assertions

Easy. Just use the CLAM_ASSERT macro. This will usually be fine for you. If not, the assertions
mechanism is fully described in a different section of this document.

In some circumstances, you may want to make a check while debugging, and remove it later for
efficiency reasons. An example of this is checking the value of an index in the Array<T> class
indexing operators. For this kind of check, you can use the CLAM_DEBUG_ASSERT macro. The
checks made using this macro will be disabled when compiling the library in ‘‘release’’ mode.

43.2 Run time problems
These may rise when you are performing some operation which may fail, such as trying to open a file,
trying to allocate some memory, trying to start an input/output system device, etc.

These are not assertions, in the sense that even if the program is absolutely correct, these conditions
may fail.

The behavior when you find one of these problems depends on the context where you find it:

1. You should not throw an exception from your ConcreteConfigure() method. You should
return a false value instead, and maybe add a textual explanation to the mStatus member. This
will leave the object in an unconfigured state, and allow the user to fix the problem. If he does not,
the Start() method will complain for you.

2. You should throw an exception elsewhere, and you should clearly explain the fact in the
documentation of the methods in your class from where this exception may come out.

If you have this kind of situation in your code, you should use one of the standard exception classes
defined in CLAM library. See the src/Errors/ directory for the collection of available exception
classes. If no one fits your needs, it may be a good time to write a new exception class, but you can
always throw the base CLAM::Err class meanwhile.

44 Writing tests for your classes

44.1 Why?
Mainly for two reasons:

1. This way you will be able to find trivial run time errors easily and as soon as possible. Otherwise,
if you find them when you are using your class in a bigger system with many other classes, it will
sure be much more difficult to trace the problem.

2. This way, once the class is finished, it will be really easy to introduce further changes, and check
that everything keeps working as expected.

A non-trivial bug may take just a minute to detect, understand and fix if you run a test program
often while you are coding, because you will always be almost sure that the problem belongs to the
latest changes you have made.

It will usually take you more than ten times longer (say, 10 minutes) if you first encounter this bug
when you are using your class in a larger system, after making many modifications without testing
hard.

If it is someone else who runs into this bug while using your class in a bigger program, it can take
him a hundred more times (say, a couple of hours) to trace the problem and fix it (or ask you for a fix).

55

CLAM User and development documentation

Some argue that you should write the class test even before you start programming your class, so
that you already have a program against which you can try it all along the process of coding.

44.2 How?
You should definitely have a look around the tests/ directory in CLAM sources to take a feeling of
how the test thing goes. There you can find a test file ‘‘skeleton’’ (TestSkeleton.cxx) to take as
starting point, but you usually have complete freedom in the way to implement a test. Anyway, it
should follow a standard convention to communicate its results:

Your test program should know when things are working fine, and when they are not.
The main() function in your program should return 0 when everything has worked as expected.
It should return a non-zero value when some error is found, such as an exception being thrown
somewhere, or output values from your class containing incorrect data.
Of course, it is usually nice to have some output written when something fails, explaining the
details of the failure.

45 Helper classes

45.1 Enumeration classes
In the situations where you would normally use a standard C++ enum type, you should consider using
a CLAM Enum class instead.

CLAM Enums are much like C++ enums, with the advantage that they have storage capabilities
built in. In run-time, C++ enums only provide the integral value, CLAM::Enum’s also use the
symbolic value (the string). See the src/Standard/Enum.hxx class Doxygen documentation for
more information.

45.2 Flags classes
CLAM::Flags<N> also provides symbolic usage and storage capabilities to the std::bitset<N>
class. You should use the Flags CLAM class, instead of a std::bitset , or instead of an integer
plus bit-mask mechanism. That way you gain storage capabilities.

See the src/Standard/Flags.hxx Doxygen documentation for more information.

46 Prototypes
NOTE1: In previous CLAM releases the Prototype interface was included in the Processing base class
and was indeed a recommended way of working. Experience has demonstrated that this feature is only
necessay in very specific cases and has therefore been removed from the base class interface.
Nevertheless, some particular classes such as the FFT still keep this functionality, which can indeed
improve efficiency. Only read the following paragraphs if you are really worried about efficiency
issues and have the suspicion that the use of prototypes at the input/output of your processing may
help

NOTE2: This section discusses some concepts related to dynamic types. If you are not familiar with
them, you should read some relevant documentation on the issue.

The processing data objects used as inputs and outputs for a processing object can sometimes have
multiple alternative dynamic attributes, which are often different representations of the same data. In
other words, they can have different dynamic prototypes. An example of such multiplicity is the
Spectrum class.

56

CLAM User and development documentation

Trying to read a dynamic attribute that is not instantiated is a run-time error, so it should never
happen. One should use the Has...() dynamic method to check if a certain attribute is instantiated
before using it.

Some structural parameters of the data objects must also be checked before using them. Buffers
size, for example, is often stored as a dynamic attribute in the data object. One can not assume these
values, they must be checked for each data object before relying on them.

If the processing data classes you are handling do not have such kind of prototype alternatives or
structural parameters, you don’t need to provide the SetPrototypes() method.

Otherwise, processing classes must be ready to handle this attribute diversity. Instances of a well
written processing class should be able to cope with every valid prototype at its inputs, probably with
different performance in different cases.

In normal cases all of the above requires quite a few checks, which may degrade the performance of
the execution method.

The SetPrototypes functions can be used to avoid this performance problem. When the
application (or the flow control) calls a SetPrototypes method, the object can assume that
subsequent calls to the execution method will pass data objects with the same prototypes and structural
parameters as the ones specified with SetPrototypes , until a new call to SetPrototypes is
made, or until the UnSetPrototypes method is called.

These methods are just informative; the object is not required to perform any specific action. It can
safely ignore these calls. If you want to take advantage of them, you will typically do an exhaustive
prototype checking, and set some internal state attribute in your processing object according to what
you find in the data. This state variable can be checked with a single switch statement in your Do
method.

46.0.1 Footnotes

3 This is due to some missing functionality in the processing object composite system
4 You must not override the base class Configure method.

57

CLAM User and development documentation

VIII Processing Data classes

47 Scope
This section is written having in mind average CLAM users. In the "Developer" part of this document
you will also find a chapter on Processing Data that is mainly addressed to developers who want to
implement a new Processing Data class.

48 Introduction
In CLAM terminology, a Processing Data (PD for short) class is a class designed for storing all sort of
data that will be used in the processing process. All Processing Objects have Processing Data objects
as inputs/outputs (therefore all arguments of the concrete Do() method must be Processing Data).
Examples of Processing Data classes include Spectrum, Audio, SpectralPeakArray, Fundamental,
Segment, Frame.

49 Basic structural aspects
Any PD class is in fact a concrete Dynamic Type Class (it derives from abstract ProcessingData class,
which itself derives from DynamicType). Therefore most of the PD attributes are macro-derived
dynamic attributes. For example, in the declaration of the class you will see something like
DYN_ATTRIBUTE(1,public, Spectrum, ResidualSpectrum) , which means that the
given class has a public dynamic attribute called ResidualSpectrum that is an object of the Spectrum
class.

All dynamic attributes have associated automatically derived Setters and Getters that may be used
from outside the class. Furthermore, attributes can be Added and Removed at run-time (please refer to
Dynamic Type’s chapter if you need further explanation on these issues).

Some classes have private dynamic attributes that cannot be accessed directly but offer an
alternative public interface. If you encounter a private or protected attribute with a name starting with
the ’pr’ prefix (i.e. prSize) you should look for its associated public interface (i.e. GetSize() and
SetSize()).

Very rarely, some PD class have an attribute that is not dynamic. In that case, you should be granted
the corresponding Set/Get interface so its usage will not be different.

50 Efficiency Issues
Most PD classes offer convenient shortcuts for accessing and setting elements in their buffers that
should be very useful in a developing stage but should be avoided if seeking efficiency in a given
algorithm.

Ex:
The Spectrum class has a MagBuffer and a PhaseBuffer for storing spectrums in a magnitude-phase

manner. It also offers shortcut methods for accessing and setting both phase and magnitude of a given
bin. Let’s take a look at the code of the GetMag() method.

TData Spectrum::GetMag(TIndex pos){ SpecTypeFlags tmpFlags; GetType(tmpFlags); if(tmpFlags.bMagPhase) return GetMagBuffer()[pos]; else if (tmpFlags.bMagPhaseBPF) return GetMagBPF().GetValueFromIndex(pos); else if (tmpFlags.bPolar) return GetPolarArray()[pos].Mag(); else if (tmpFlags.bComplex) return GetComplexArray()[pos].Mag(); else throw Err("Spectrum::GetMag: Spectrum no initialized");}

The main advantage of this shortcut is its flexibility and the fact that the memory layout of the data
is transparent to the user. But it is not a very ’efficient’ method!

58

CLAM User and development documentation

Let’s now suppose that we have an algorithm that computes the average of the magnitude in the
spectrum. We could think of doing something like:

TData ComputeAverage(const Spectrum& spec){ int i; TData sum=0; for (i=0;i<spec.GetSize();i++) sum+=spec.GetMag(i); return sum/spec.GetSize();}

This method could be made much more efficient if the usage of the shortcut was avoided. In that
case, the code would become something like:

TData ComputeAverage(const Spectrum& spec){ int i; TData sum=0; DataArray mag = spec.GetMagBuffer(); for (i=0;i<spec.GetSize();i++) sum+=mag[i]; return sum/spec.GetSize();}

Another consideration about the algorithm that needs clarification is the fact that the GetSize()
method is being called in every step of the loop! That is not a very efficient way to go either. The
finally optimized ComputeAverage() method should look somewhat like:

TData ComputeAverage(const Spectrum& spec){ int i; TData sum=0; DataArray mag = spec.GetMagBuffer(); int size= spec.GetSize(); for (i=0;i<size;i++) sum+=mag[i]; return sum/size;}

Finally, let’s think of a method that instead of computing the average out of a given spectrum, sets
the magnitude to twice the original one. If we tried to follow the previous example we would come up
with the following code:

void DoubleMagnitude(const Spectrum& spec){ int i; TData sum=0; DataArray mag = spec.GetMagBuffer(); int size= spec.GetSize(); for (i=0;i<size;i++) mag[i]*=2;}

The previous code would not work. The reason is that when we are calling the GetMagBuffer()
method and assigning the result to our mag variable, we are actually doing a copy of the Array. All
modifications that are done afterwards to the mag array are only done on the local copy. Then, what is
the solution? The following code gives you the right way to deal with this case (assigning the result to
a DataArray reference):

void DoubleMagnitude(const Spectrum& spec){ int i; TData sum=0; DataArray& mag = spec.GetMagBuffer(); int size= spec.GetSize(); for (i=0;i<size;i++) mag[i]*=2;}

Note: Due to the nature of Dynamic Types, it is very error-prone to Add/Remove dynamic attributes
from a Dynamic object after a reference has been assigned. The following are examples of code likely
to fail:

Spectrum& spec=myFrame.GetSpectrum();myFrame.GetSpectrum().AddComplexArray():myFrame.GetSpectum().UpdateData();//Do something with spec: error, reference may be lost!!

Spectrum& spec=myFrame.GetSpectrum();spec.AddAll();spec.UpdateData();//Error, reference may be lost!!

Spectum& spec=myFrame.GetSpectrum();spec.SetType(myFlags);/*Error, reference may be lost!! SetType operation may add/remove attributes to Dynamic Object*/

51 Introduction to CLAM‘s Core PD classes
In this section, a brief overview of the Processing Data included in CLAM’s core is given. If more
details are needed, it is better to refer yourself to the code or the DOXYGEN generated
documentation.

51.1 Audio
Attributes

In short, the Audio class has three basic attributes (SampleRate, BeginTime, and Size), one buffer
(Buffer) and associated descriptors (Descriptors). All of them have associated Getters and Setters. The
Size attribute is, in fact, a structural attribute. Thus, a change in its value implies a change in the
existing buffer. On the other hand, the BeginTime and SampleRate attributes are purely informative
and thus, a change in their value only implies a change in the attributes but not on the buffer.

Additional interface
The Audio class has some additional interface for working with time tags instead of indices or sizes.

The Getters/Setters for EndTime and Duration do not belong to an associated attribute but are rather
different ways of changing the size of the Audio.

59

CLAM User and development documentation

There is also an additional interface for working with audio chunks and slices. An audio chunk is
defined as another Audio object that has a copy of a subset of the data in a given Audio. On the other
hand, an sudio slice is defined as an Audio object that has a reference to a subset of the samples in a
larger Audio object. Therefore the difference is that while in asking for an audio chunk you are getting
an actual copy of the data in the audio, an audio slice will have the same effect but without actually
copying the data but rather referencing the original one. In an audio slice if the original audio is
deleted the audio slice will be left with no valid audio data.

51.2 Spectrum
The Spectrum is possibly the most complex PD class in the CLAM repository. It is a fundamental
class for the library’s purposes and some ’extra’ care and effort have been put into it.

A Spectrum can be represented in one of the following formats: array of complex numbers, array of
polar numbers, a pair of magnitude/phase arrays, and a pair of magnitude/phase BPF’s (Break Point
Function). The Spectrum class is designed in such a way so as to be able to keep consistency of the
data in its different representations. This is accomplished through the SetTypeSynchronize and
the SynchronizeTo methods and some conversion routines (which are private and cannot be
accessed directly). Note though, that the SetType method does not perform this sort of data
consistency check and only instantiates the necessary attributes with the existing Size.

There is an accessory interface for accessing/setting Magnitude and Phase regardless its internal
representation. These methods are not efficient but help in keeping consistency between different
representations.

The spectrum also has two different sizes: Size and BPFSize. We won’t go into many details about
the reasons for being so but if you feel you need to understand this difference maybe it is time you just
take a look at the code and Doxygen documentation and look at the BPF class.

The Spectrum class is right now the only PD class that has an associated configuration. This
configuration is used for initialization purposes and a local copy is not kept in the object. Whenever
the GetConfig(SpectrumConfig& c) method is called, the argument passed and used as
output of the method is synchronized with the internal structure of the spectrum.

If the previous explanation did not seem enough or you are still left with many doubts about this
class we strongly recommend that you take a look at the SpectrumExample in the CLAM repository.

51.3 SpectralPeak and SpectralPeakArray
A SpectralPeak is a simple storage PD class that has the following dynamic attributes: Scale, Freq,
Mag, Phase, BinPos, and BinWidth. By default, only frequency, magnitude and scale are instantiated,
all others, if needed, must be added by hand. It has also a couple of operators like product, distance
and log/linear scale converting routines. By itself it is seldom used and should be preferably used
through the SpectralPeakArray class.

The SpectralPeakArray is not, as its name may imply, just a simple array of SpectralPeaks. As a
matter of fact, the SpectralPeakArray class does not hold SpectralPeak’s inside but rather a set of
buffers containing magnitude, frequency, phase, bin position, bin width and index. By default only the
MagBuffer and FreqBuffer are instantiated, all others must be added by hand. Apart from these, it
includes other non-array attributes such as Scale, nPeaks (number of peaks currently available) and
nMaxPeaks (maximum number of peaks allowed). By default all these dynamic attributes are
instantiated.

Even though the most efficient way to deal with a PeakArray is to work directly on the buffers (see
section 50), two accessory interfaces are offered: first, you can access/modify any of the attributes of a
given peak by using the interface offered by methods like GetMag() or SetPhase() ; but also, you
can use an interface using SpectralPeak objects through the GetSpectralPeak() and
SetSpectralPeak() methods. Note that these methods do not return a pre-existing peak but

60

CLAM User and development documentation

rather construct the peak object on the fly. Therefore, they are far from efficient.
Another particularity that needs mention is the IndexArray. It is a multi-purpose array of indices.

Currently it is used for fundamental detection, peak continuation and track assigning. It is sometimes
indeed a very convenient way of dealing with many insertions/deletions of peaks into the array as they
can be substituted by a simple change in index (having the negative values mean that the particular
peak is not valid, for instance). An accessory interface (consisting of several methods) is also offered
for working through indices.

51.4 Fundamental
The Fundamental class is a basic storage PD class used for storing the result of a fundamental (pitch)
detection algorithm: a set of candidate frequencies and the computed estimation error if present. It has
two integer dynamic attributes that hold the current number of candidates and the maximum allowed
and two arrays: one of frequencies and the other one containing the errors. All the dynamic attributes
are instantiated by default.

51.5 Frame
A Frame class has two time related attributes that are instantiated by default: CenterTime and
Duration. Apart from that, it has ’a bunch’ of other attributes that belong to one of the PD classes
explained in the previous sections. Namely, we have: two Spectrum (one for the general spectrum and
the other for the residual component), a SpectralPeakArray, a Fundamental and an Audio attribute that
is usually used for storing the windowed audio chunk that has been used for generating the other data.

All other methods are just shortcuts for the getters and setters of the previous attributes and may
come in handy for some applications that do not bear efficiency requirements.

51.6 Segment
A Segment consists basically of an audio frame (Audio dynamic attribute) and an aggregate of Frames.
This aggregate is implemented as an CLAM::List so as to favor fast insertions and deletions and
supposing that access is usually going to be sequential. This list of frames can be searched upon, using
its begin time as the sorting criteria. Apart from this, the Segment follows a composite pattern so a
segment can in turn hold an aggregate of other Segments (which are known as children and thus stored
in the Children dynamic attribute). In the composite structure, only the root segment may hold data
(frames and audio) but this data may be accessed from a child located at any level. For doing so, all
children have a pointer to their parent. (This member is not a dynamic attribute and will not therefore
be stored if doing an XML dump). In order to know if the Segment holds data or not, a structural
attribute is included: prHoldsData , which may be accessed through the
GetHoldsData/SetHoldsData interface. The SetHoldsData method is not just an accessor,
if set to true, the child will actually detach itself from its parent and copy the data that corresponds to
its time interval. If set to false the child will remove the data attributes (frames and audio). Note that
you should do a SetpParent afterwards in order to keep that segment consistent.

A Segment also has a couple of informative attributes: BeginTime and End Time and a set of
associated descriptors (SegmentDescriptors).

The following UML class diagram illustrates the inner structure of the Segment class and its
associates:

61

CLAM User and development documentation

51.7 Descriptors
Descriptors are a special kind of ProcessingData that are always bound to another ProcessingData
class. They describe numerical attributes that are usually computed from the data in the PD object
using ’basic’ statistical computations. At the time being the Descriptor functionality is being
completely refactored. If you feel that you cannot wait you can take a look at the
DescriptorComputationExample in the repository or at the development documents at the CLAM
webpage to get a grasp of what will be very soon offered.

52 Basic XML support
As all PD classes are concrete Dynamic Type classes have automatically built-in XML support. At this
moment XML input/output is fully supported. Please refer to chapter IX for more details.

62

CLAM User and development documentation

IX XML Support

53 Scope
This section is addresed to anyone who wants to get an already implemented CLAM object and
passivate it as XML or to activate such a CLAM object from a previous passivated XML document.

If you want to provide XML support to your own classes or you want to customize the default XML
output that any DynamicType has, you may also refer to the other XML related sections on the
developer’s part of this document.

54 Brief introduction to XML
XML is a text based format to represent hierarchical data. XML uses named tags enclosed between
angle brackets to mark the begin and the end of the hierarchical organizators, the XML elements.
Elements contains other elements, attributes and plain content. Let’s see a sample XML document:

<?xml version=’1.0’ encoding=’ISO-8859-15’ ?>
<mainElement>
 <subelement1 attribute1="atribute Content">
 plain content here
 <subsubelement>plain content</subsubelement>
 plain content here
 </subelement1>
 <subelement2 attribute2="atribute Content">
 <subsubelement>plain content</subsubelement>
 <subsubelement>plain content</subsubelement>
 <subsubelement>plain content</subsubelement>
 </subelement2>
 <emptyelement attribute="foo" />
</mainElement>

Both attributes and plain content are simple text data. The main different between them is that an
attribute is named and plain content is not. Elements also have a name. Names for attributes must be
unique inside its hierarchic context, though this restriction doesn’t apply to elements’ name.

The power of XML is that you can adapt your own tags (elements) and tag attributes (attributes) in
order to describe your own data.

For more information on XML, visit W3 Consortium XML page.
There is also a MTG report about XML related standards and API’s.

55 Storing components
A very fast example on how to store a Component (that means DynamicTypes, ProcessingData,
ProcessingConfig... and any other instance of any Component subclass) would be:

MyComponent comp;

// Here you modify your component
// ...

XMLStorage::Dump(comp, "MyComponent", std::cout);

The first parameter of the Dump method is the object to be stored, the second one the name of the
XML document root, and the last one is the std::ostream that you want the XML be written to. You
can use std::cout or any other std::ostream like std::ofstream ,

63

CLAM User and development documentation

http://www.w3.org/XML
http://www.iua.upf.es/~dgarcia/xmlvokimon.html

std::stringstream or any other you specialize.

std::ofstream out("mycomponent.xml");
XMLStorage::Dump(comp, "MyComponent", out);

For short, instead of an open stream you may specify the file name and will also work:

XMLStorage::Dump(comp, "MyComponent", "mycomponent.xml");

(TODO: Update this piece documentation to the last changes) By default, XMLStorages uses no
indentation. That means that all any output is done in one single line without tabulators. If you want to
pretty format it you should use the UseIndentation method like this:

storage.UseIndentation(true);

56 Loading components
The inverse way is nearly the same.

// An unmodified default constructed object!!!
MyComponent comp;

XMLStorage::Restore(comp, "mycomponent.xml");
// or alternatively
std::ofstream in("mycomponent.xml");
XMLStorage::Restore(comp, in);

Attention: Loading methods suppose that the objects are default constructed and unmodified. If not,
weird things can happen.

57 Detailed step interface
The XMLStorage static methods used above provide shortcuts for the widely used funcionalities.
But you may want to do something special like:

storing optimally the same object it onto two different streams,
updating an existing xml by adding some objects to it,
extracting an object from a part of a document,
writing a document fragment
...

Static methods are not enough, but you still can instantiate an XMLStorage object and use the
non-static methods with it. Non-static methods implements smaller steps than static methods do. and
you can combine them in order to obtain some concrete behaviour.

The non-static methods that XMLStorage provides are:

Create: Creates an Empty DOM document.
Read: Creates a DOM document from the XML that comps from an istream.
WriteDocument: Writes on a stream the whole document
Select: Changes the selected node (by default the root is selected)
WriteSelection: Writes on a stream the selected target
DumpObject: Dumps the CLAM object on the selected DOM node
RestoreObject: Restores the CLAM object from the selected DOM node

64

CLAM User and development documentation

For example, if you want to update an xml document by adding an object on XPath
/Doc/element/subElement, you can use the sequence Read-Select-DumpObject-WriteDocument.

Check the Doxygen documentation for more information on the usage of those methods.

65

CLAM User and development documentation

X Audio File I/O in CLAM

58 What is able to do?
Currently, CLAM is able to decode the following audio file formats:

Ogg/Vorbis
Mpeg Audio Layer I, II, III
Microsoft’s WAVE/RIFF
SGI/Apple’s AIFF
Sun’s AU, SND
Paris Audio File (PAF)
Creative’s VOC
and several more

obviously we haven’t implemented ourselves the routines for achieving this from scratch. We use
several free libraries like:

libsndfile (http://www.mega-nerd.com/libsndfile) an excellent library by Erik de Castro.
Ogg/Vorbis SDK by http://www.xiph.org
Underbit’s libmad http://www.underbit.com/products/mad

With exception of Mpeg Audio, due to IP fuss around Fraunhöfer, all decodable file formats can be
encoded with the help of CLAM.

Besides being able to read and write audio data, there is also the possibility of extracting meta-data
embedded in Vorbis or Mpeg bitstreams. In the case of Mpeg bitstreams, this implies to deal with ID3,
the format for tagging Mpeg audio streams. We handle ID3 through id3lib http://id3lib.sourceforge.net

59 Usage examples
There are available several usage examples of new CLAM Audio file I/O tools:

59.1 Audio File I/O: File information extraction example
Makefile / Visual C++
project location:

build/Examples/Simple/FileInfo

Sources location: examples/FileInfo_example.cxx

Complexity: Medium

Keywords: Audio file I/O tools, Textual meta-data extraction

Pre-requisites: Familiarity with CLAM::Processing usage

Description:
This example shows how to extract useful information

about audio files using the CLAM::AudioFile class.

66

CLAM User and development documentation

http://www.mega-nerd.com/libsndfile
http://www.xiph.org/
http://www.underbit.com/products/mad
http://id3lib.sourceforge.net/

59.2 AudioFile I/O: Audio file reading example
Makefile / Visual
C++ project
location:

build/Examples/Simple/AudioFileReading

Sources location: examples/AudioFileReading_example.cxx

Complexity: Medium

Keywords: Audio file I/O tools, Read operations

Pre-requisites: Familiarity with CLAM::Processing

Description:
This example shows how to access an arbitrary audio file

and perform some simple analysis on the data it contains.

59.3 Audio file I/O: Audio file writing example
Makefile / Visual C++
project location:

build/Examples/Simple/AudioFileWriting

Sources location: examples/AudioFileWriting_example.cxx

Complexity: Medium

Keywords: Audio file I/O tools, Write operations

Pre-requisites: Familiarity with CLAM::Processing

Description:
This example shows how to create an stereo file

using CLAM file I/O tools.

59.4 Playing an arbitrary audio file
Makefile / Visual C++
project location:

build/Examples/Simple/FilePlayback

Sources location: examples/FilePlayback_example.cxx

Complexity: Low

Keywords: Audio device I/O

Pre-requisites:
Minimum familiarity with CLAM objects such as
Processing and ProcessingData

Description:
This examples shows how to play an arbitrary sound

file with your soundcard

67

CLAM User and development documentation

XI Audio I/O

60 The AudioManager
The core of CLAM audio input/output is the AudioManager class. The AudioManager takes care of all
administrative tasks concerning the creation and initialization of audio input and output streams, using
the internal, system dependent AudioDevice class.

The first thing you need to do in order to use audio is create an AudioManager object. While this
object is present all subsequent audio I/O objects created will use it. You should specify samplerate
and latency. The latency is used to control the internal buffersize, and depends on your hardware.
Typically, you will be safe with a value of 1024, but especially with a low-latency patched linux you
could safely use 256.

AudioManager audioManager(44100,1024);

61 The AudioIn and AudioOut classes
The actual audio I/O classes, called AudioIn and AudioOut, can than be uses to create processing
endpoints to retrieve audio from, or write audio to. Note that each of these objects is mono (the
argument to the Do(..) function is a single Audio object). The AudioIn and AudioOut objects have
to be created with an AudioIOConfig object that can be used to specify the device, the channel and the
sample rate to use.

61.1 Specifying the device
The device is referred to with a string that has the following form:

"ARCHITECTURE:DEVICE"

Currently, implemented architectures are alsa , rtaudio , portaudio and directx . The
available devices depend on your hardware and system configuration, and which objects you link your
application with (in src/Tools/AudioIO/... . You can use the class AudioDeviceList, to obtain
a list of available devices for the platform you use:

audioManager.FindList(arch)->AvailableDevices()

This returns a const std::vector<std::string>&
However, if you don’t specify the device, or use the string "default:default" , the

AudioManager will choose the device that seems most adequate for your architecture. Similar, it is
possible to obtain a list for the default architecture, passing "default" to the
AudioDeviceList::FindList method.

61.2 Specifying the channel
In order to have a flexible multi channel system, you can specify the channel you want to use for each
AudioIn and AudioOut. The AudioManager will use this information to initialize the internal audio
handling. Typically, you may want to use 0 for left and 1 for right.

Example:

68

CLAM User and development documentation

 AudioManager audioManager;

 inCfgL.SetChannelID(0);
 inCfgR.SetChannelID(1);

 AudioIn inL(inCfgL);
 AudioIn inR(inCfgR);

If you want mono input/output, you can simply leave this out, and just create a single default
AudioIn/AudioOut object.

69

CLAM User and development documentation

XII MIDI I/O
The MIDIIO approach has several similarities with the AudioIO, and it is recommended to read the
AudioIO documentation first. Basic knowledge of the MIDI protocol is required.

The following documentation reflects the MIDIIO implementation since CLAM 0.6.1. The main
difference with earlier releases is the addition of MIDI output, a simplification of the MIDIInControl
(no more ChannelMasks and MessageMasks - you’ll have to create a MIDIInControl for each channel
(or one for all) / message type)

62 The MIDIManager
The core of CLAM midi input is the MIDIManager class. TheMIDIManager takes care of all
administrative tasks concerning the creation and initialization of midi input streams, using the internal,
system dependent MIDIDevice class.

The first thing you need to do in order to use MIDI, is to create a MIDIManager object. This object
will be a singleton, and all subsequent MIDI I/O objects created will use it.

MIDIManager midiManager;

63 MIDI I/O Processings and their configuration

63.1 The MIDIIn and MIDIInControl class
The actual MIDI input class, called MIDIIn, can be used to parse incoming MIDI data, and handle it in
any way. But more useful, in the CLAM context, is the derived class, MIDIInControl. A
MIDIInControl has one or more OutControls, and can be used to convert the incoming MIDI data to
ControlData. MIDIIn and MIDIInControl objects have to be configured with a MIDIIOConfig object.

63.2 The MIDIOut and MIDIOutControl class
TODO: Example MIDIOut

63.3 The MIDIIOConfig class
Both MIDIIn, and derived MIDIInControl, and MIDIOut, and derived MIDIOutControl, have te be
configured with MIDIIOConfig. This ProcessingConfig contains the following fields:

Name Set with Meaning for
MIDIIn

Meaning for
MIDIOut

Observations

Device SetDevice Specifies the
midi device to
use.

Specifies the
midi device to
use.

See section 64.1.

70

CLAM User and development documentation

Channel SetChannel Specify
channel (1-16)
to listen to for
incoming
MIDI
messages. If
set to 0, the
MIDIInControl
will listen to
all channels,
and create an
OutControl
(the first) to
output for each
message what
channel it
appeared on

Specify channel
(1-16) for
outgoing MIDI
messages. If set
to 0, the
MIDIOutControl
will create an
InControl (the
first), that can be
used for specify
the channel for
each message.

Message SetMessage Specify
message type
to listen to for
incoming
MIDI
messages.

Specify message
type for
outgoing MIDI
messages.

MIDI message types are specified in
src/Tools/MIDI/MIDIEnums.hxx ,
see section 65

FirstData SetFirstData Specify first
data byte to
listen to for
incoming
MIDI
messages of
the specified
message type.
If left
unconfigured,
or set to 128
(default), the
MIDIInControl
will have an
OutControl
that outputs the
first data value
of each
incoming
message.

Specify first data
byte for
outgoing MIDI
messages. If left
unconfigured, or
set to 128
(default), the
MIDIOutControl
will have an
InControl the
control it.

This is especially usefull for control
change messages, where the first data byte
specifies the type of control change. (For
example, 1 is modulation, 11 is
breath/expression).

On the input side, the MIDIManager and MIDIDevices use this information to create a very efficient
MIDI parsing table.

71

CLAM User and development documentation

63.4 Dynamically created InControls and OutControls
The number of InControls / OutControls on a MIDIOutControl / MIDIInControl resp., depends on the
configuration used. This is reflected in the table above. Resuming, in case of the MIDIInControl, you
will only get OutControls for those fields that you do not specify a specific filter value for. In the case
of the MIDIOutControl, you will only get InControls for those fields that you do not specify a specific
default value for. In both cases, this is done through the MIDIIOConfig

The name of each InControl / OutControl is set to "MESSAGE:FIELD" automatically, for
example "NoteOn:Key" , "NoteOn:Vel" , etc. You can obtain this with the method

const std::string& OutControl::GetName()
const std::string& InControl::GetName()

64 The MIDIDevice class

64.1 Specifying the MIDI device
The device is referred to with a string that has the following form:

"ARCHITECTURE:DEVICE"

Currently, the implemented architectures are alsa and portmidi , and the "virtual" MIDI file
devices file (input only) and textfile (output only). The available devices depend on your
hardware and system configuration. You can use the class MIDIDeviceList, to obtain a list of available
devices for the platform you use:

MIDIManager::FindList(arch)->AvailableDevices()

This returns a const std::vector<std::string>&
However, if you don’t specify the device, or use the string "default:default" , the

MIDIManager will choose the device that seems most adequate for your architecture. Similar, it is
possible to obtain a list for the default architecture, passing "default" to the
MIDIDeviceList::FindList method.

64.2 Clocking the MIDI device
MIDIEnums.hxx defines the following:
When the MIDI input comes from a device, typically live input, MIDI messages gets delivered
through the controls as soon as they come in. In the case of the special "virtual" FileMIDIDevice, this
situation is slightly different, and you will have to add a MIDIClocker to control the sequencing of the
data in the MIDI file. Please look at the MIDI_Synthesizer_example for info.

65 MIDI Enums
MIDIEnums.hxx defines the following:

 eNoteOff = 0,
 eNoteOn = 1,
 ePolyAftertouch = 2,
 eControlChange = 3,
 eProgramChange = 4,
 eAftertouch = 5,
 ePitchbend = 6,
 eSystem = 7

72

CLAM User and development documentation

XIII The Application Classes
CLAM provides several Application Classes that provide a basic framework for typical application
situations, such as audio, or audio + graphical user interface. When necessary, threads or setup, and
several virtual functions are provided, which can be implemented by deriving from the relevant
application subclass (AudioApplication or GUIAudioApplication).

66 BaseAudioApplication
This class is the base of all (derived) AudioApplication classes. It sets up a (high priority) audio thread,
and specifies several virtual functions:

void AudioMain(void) , which will be executed inside the audio thread. This is where the
derived classes implement the actual audio processing.
void UserMain(void) , which will be executed by the main thread. This is where the derived
classes implement the actual (graphical) user interface.
void AppCleanup(void) , which will be executed when the applications ends. This is where
the derived classes implement any extra resource cleanup.
bool Canceled(void) , which can be used in the AudioMain , to check if the audio thread
has been canceled.

This class should never be used directly. If you want a standard audio application, use
AudioApplication instead.

67 GUIAudioApplication
This class is derived from BaseAudioApplication, and additionally provides a standard user-interface,
with start/stop functionality. This user interface uses the FLTK library.

The virtual function void GUIAudioApplication::UserMain(void) by default just
calls Fl::run() , but a derived class could add a more complex user interface here, before calling
Fl::run() .

The function void GUIAudioApplication::Run(int argc,char** argv) has to be
called to execute the application.

68 AudioApplication
This class behaves different on Linux and Windows.

In Windows, DirectX audio can only be used in combination with a window open. Therefore,
AudioApplication is derived from GUIAudioApplication, where the GUI is just a basic window
with start/stop buttons.
In Linux, it is perfectly possible to have an audio application without a user interface. Therefore,
AudioApplication is derived from BaseAudioApplication directly.

Obviously, if you are developing an AudioApplication under Windows, but with a custom user
interface, you should use GUIAudioApplication instead, so your application will be cross platform.

The function void AudioApplication::Run(int argc,char** argv) has to be
called to execute the application.

73

CLAM User and development documentation

69 Creating and running an Application
If you want to write an (GUI)AudioApplication , you have to implement the void
AudioMain(void) , and optionally the void UserMain(void) and void
AppCleanUp(void) methods.

The void AudioMain(void) typically creates an AudioManager, instantiates some audio
processing objects, and enters a loop, until the audio thread is canceled:

do{ /* processing code here, calling Do(...)’s */} while (!Canceled());

The void UserMain(void) typically creates a (graphical) user interface. In a Linux
command line AudioApplication this might just be waiting for a keypress. In a
GUIAudioApplication (and therefore in a Windows AudioApplication, it typically sets up a FLTK
user interface, and finally calls Fl::run() .

To execute the derived AudioApplication:
int main(int argc,char** argv){ try { MyAudioApplication app; app.Run(argc,argv); } catch(Err error) { error.Print(); std::cerr << "Abnormal Program Termination" << std::endl; return -1; } catch (std::exception e) { std::cout << e.what() << std::endl; return -1; } return 0;}

74

CLAM User and development documentation

XIV Visualization Module
CLAM Visualization Module can be described as a set of tools that try to help application developers
with the task of providing a Graphical User Interface to their applications. This help comes in the
following forms:

As easy to deploy and simple objects called Plots, that are able to render on the screen common
data structures, such as CLAM::Array, or CLAM ProcessingData objects, such as the Spectrum.
A set of toolkit-independent and efficient algorithms for generic data display implemented with
OpenGL.
A set of custom Widgets which are commonly needed when adding GUI features to a CLAM’s
domain application.
A set of abstract classes that model the problem of projecting CLAM objects onto a GUI, allowing
users to both visually inspect these objects as well as to interact with them.

Note that these different ’tools’ might be used alone or combined. It’s up to you to decide what do
you need of the utilities the Visualization Module offers.

70 Plots
New!: We have just added new and fancier Plots based on the QT framework. The documentation is
currently on a different document .

The VM Plots facilities are very similar to the ones offered by MathWorks MATLAB (c) or
GNUplot, where the user is able to render easily a piece of data allowing some level of customization
as curve color, axis scales, etc. while details as concrete rendering algorithms or interaction with
widget toolkits is transparent to her. As in both MATLAB or GNUplot, VM Plots main purpose is to
become a tool for debugging algorithms (or obtaining nice graphics for an article or lab report), not to
be efficient but functional, not flexible but simple. So they are not meant nor recommended to be
used in production-level code.

There are two kinds of VM Plots: the generic plots and the specific plots:

Generic plots allow to render data contained in generic data objects such as arrays or
CLAM::BPFs. Range and meaning of the axis is left to users to define. Generic plots are
subdivided into two kinds: the single function plots that are able to render just one function, and
the multi function plots that are able to render multiple functions simultaneously.
Specific plots allow to render ’special’ kinds of data such as audio signals, spectrums and the like.
They are ’smarter’ than generic plots since some parameters as axis ranges or meaning are implicit
on the kind of object, and they might be using rendering algorithms quite specific for them. Also
some features that are specific to them (such as playing back an audio signal) are accessible from
these plots.

We provide you with some examples that should help you to become familiar with Plots facilities.
Don’t be afraid to experiment with these examples - you might discover different ways of using them
that we did not foresee!

75

CLAM User and development documentation

http://www.iua.upf.es/mtg/clam/qtplots

70.1 Plots examples
Currently, in CLAM 0.5.3 there are available the following examples on VM Plots:

70.2 Visualization Module Plots: single function plot
Makefile / Visual C++
project location:

build/Examples/Simple/SinglePlot_1

Sources location: examples/SinglePlot_example.cxx

Complexity: Low

Keywords: CLAM GUI services, simple data visualization

Pre-requisites: Familiarity with CLAM::Array and CLAM::BPF

Description:
This example shows how to plot on the screen some data

object part of a simple DSP application

70.3 Visualization Module Plots: multiple function plot
Makefile / Visual
C++ project
location:

build/Examples/Simples/MultiPlot

Sources location: examples/MultiPlot_example.cxx

Complexity: Low

Keywords: CLAM GUI services, simple data visualization

Pre-requisites:
Familiarity with CLAM::Array and CLAM::BPF. It is
recommended to take a look first on the single function plotting
example.

Description:
This example shows how to plot on the screen some data

object part of a CLAM-based DSP application, as well as
combining several functions in the same plot window.

76

CLAM User and development documentation

70.4 SDIF I/O, Segments and plots
Makefile / Visual
C++ project location:

build/Examples/Simple/SDIF_And_Segment

Sources location: examples/SDIF_And_Segment_example.cxx

Complexity: Medium

Keywords: SDIF I/O, CLAM Segment, VM Plots

Pre-requisites:
Basic knowledge of Processing objects interface, basic
knowledge of SMS Analysis algorithm byproducts.

Description:
Shows how to restore a CLAM::Segment object stored into

a SDIF file, and inspect visually its contents.

71 Model Adapters and Presentations
In order to decouple the model elements (mainly CLAM Processing Data such as Audio or Spectrum)
a variant of the Model-View-Controller architectural pattern was implemented. In this new version the
main actors are the Presentation, the Model Adapter, and the Model Controller.

A Presentation is a graphical metaphor through which some information contained in the model
object is shown to the user. A Presentation can be anything from a simple widget to a full application
graphical interface, depending on the complexity of the model object to be presented. A Presentation
can be activated and deactivated, therefore its existence does not imply its visibility.

The ModelAdapter class defines the interface that is common to all model object adapters in CLAM
Visualization Module. It offers the interface required by the Observable actor in the GOF Observer
pattern [GOF]. The Adapter concept was chosen in order not to taint the model object interface and to
separate effectively the model objects from its representation. The main operation in the
ModelAdapter class is the abstract Publish operation that must be implemented in all subclasses in
order to publish the updated model object internal state.

The ModelController class is similar to the ModelAdapter except in that, besides from publishing
the model object state, it also allows to modify it. For that reason it adds the Update operation to the
previously mentioned Publish.

The CLAM Visualization Module also implements a Signal&Slots mechanism similar to that
offered by frameworks such as QT [QTProgramming]. The basic rationale behind the Signal&Slot
mechanism is the following: Sometimes it is required that an object notifies a change in internal state
or the reception of a message to any number of listeners. This situation can be modeled in different
ways but most of them suffer from a major drawback: coupling. In this sense, the caller must know to
some extent the callee interface. Because of this, reuse capabilities are reduced. The Signal&Slot
idiom gives solution to this problem. The Signal models the concept of "event notifying", and signals
are connected to Slots that represent "event handlers".

In CLAM the Signal&Slot idiom is implemented through three main classes: the Signal class, the
Slot class and the Connection class. The Signal and Slot classes model the obvious concepts
previously explained. On the other hand, the Connection class models the knowledge a signal has
about who has to be notified whenever a client invokes the Emit() operation on it. Each time a Signal
and Slot objects are bound together a Connection object is created, tagged by a Global Unique
IDentifierIdentifier (GUID). This particular implementation was loosely derived from R. Hickey’s
article "Callbacks in C++ using Template Functors" published in C++ Report ’95.

77

CLAM User and development documentation

Apart from the previous tools, the non-dependency from graphical toolkit implementation is also
accomplished through the use of a Widget Toolkit Wrapper. This Creator/Singleton class produces
objects that are abstract wrappers for accessing a GUI Toolkit low-level functionality such as
triggering the event loop, triggering the execution of a single iteration of the event loop or setting the
refresh rate for graphic displays.

78

CLAM User and development documentation

XV SDIF SUPPORT
SDIF or Sound Description Interchange Format is a binary format defined and supported by various
research teams. It was created with the goal of having a common format for exchanging synthesis
samples, usually spectral domain data coming from a previous analysis.

The mapping of CLAM data to a SDIF File is fairly simple; it is always done from a
CLAM::Segment (see section 51.6). The Segment internal structure can very easily be mapped to
SDIF as it basically holds inside an array of time-ordered frames. Out of the different data inside a
frame, only the necessary for the synthesis process is stored into SDIF. That is, residual spectrum,
sinusoidal peaks with track number and fundamental frequency. Due to the SDIF specification, all
magnitude data needs to be stored in linear (as opposed to what is usual in CLAM, where data is in
dB).

All this is done using two CLAM Processing: SDIFIn and SDIFOut. SDIFIn takes a Segment in its
output port because it needs a single reference where to store the created frames. SDIFOut takes
frames in its output port and enables storing frames even from different segments.

As an example, this is the way the Analysis/Synthesis Example application handles the loading and
storing of SDIF data.

Loading:

SDIFInConfig cfg;
cfg.SetMaxNumPeaks(100);
cfg.SetFileName(inputFileName);
cfg.SetEnableResidual(true);
SDIFIn SDIFReader(cfg);
SDIFReader.Output.Attach(mSegment);

while(SDIFReader.Do()) {}

and Storing:

SDIFOutConfig cfg;
cfg.SetSamplingRate(mGlobalConfig.GetSamplingRate());
cfg.SetFileName(mGlobalConfig.GetOutputAnalysisFile());
cfg.SetEnableResidual(true);
SDIFOut SDIFWriter(cfg);
int nFrames=mSegment.GetnFrames();

for(i=0;i<nFrames;i++)
{
 SDIFWriter.Do(frames[i]);
}

In order to add SDIF support to an application you might be developing, you also have to add to
your project/meakefile the files included in the /src/Tools/SDIF. These files implement the necessary
classes for mapping the sdif file content, namely the definition that the specification gives of the
following concepts: Frame, Matrix, Stream and File.

79

CLAM User and development documentation

DEVELOPER DOCUMENTATION

80

CLAM User and development documentation

XVI CLAM Coding Conventions

72 Indenting code
These guidelines aims that the code will be always well indented with the indentation size that each
programmer prefers and keeps some parts of the code vertically aligned.

Use only tabs to indent the beginning of each line.
Use only spaces to align vertically (For example when writing variables declarations in two
aligned columns or splitting a long line)
If the aligned word is the first one in the line, you must keep the same number of tabulators that
has the line you want to align with.

On the following example [tab] represents tabulators and . represents spaces used for alignment.
 [tab] [tab] double.a; [tab] [tab] int....b; [tab] [tab] if (a<b && b<c) { [tab] [tab] [tab] std::cout << "a is less than c"; [tab] [tab] [tab]<< std::endl;

Ensure that your editor does not change tabulator by spaces or spaces by tabulators.
Some hints about some used editors:

MS VisualC++ : Tools->Options->Tabs-> FileType:C/C++, Keep Tabs,
AutoIndent: Smart
Emacs: Add something like this to your .emacs file: (setq c-default-style ’((other
. "bsd"))) (custom-set-variables ’(tab-width 4))

73 Naming conventions
When an identifier is composed of several words, they must be appended together (without "_’)
and distinguishing each word with the initial in upper-case.
Functions and methods starts with upper-case.
Variables and members start with lower-case.
Normal members should start with a lower-case ’m’ like in mMemberName
Static members should start with a lower-case ’s’ like in sMemberName
Identifiers inside an enum declaration must start with a lowercase ’e’ like in enum
MusicalStyles { eRock, ePop, eClassic };
Dynamic Types members: Mustn’t start with ’m’ or ’s’ and in upper-case. Dynamic types are
implemented using macros that will create code for the member’s accessors. So, when registering a
dynamic type member like DYN_ATTRIBUTE(0,public, ComplexArray,
Array<Complex< TData> >) keep in mind that the identifier (3rd parameter) will be used
for creating the methods: GetComplexArray() and so on.

§ It’s possible that in the future we’ll change to a template-based implementation, so that it will turn
to a normal member declaration. Then the naming convention is likely to be like dComplexArray .

74 Programming style
Use const whenever is possible:

Declare const a member function (method) when it doesn’t modify the object
Declare const the parameters that are not going to be modified inside the function

81

CLAM User and development documentation

Declare const the return if it is something of the object we don’t want to be modified outside
Use const & parameter passing instead of by value, for efficiency

In general is better to pass parameters by reference than by pointers, because we implicitly are not
allowing delete the object.

75 Error Conditions
See Error notification and managing for more details.
If an error condition is to be handled by the function caller throw an exception and publish it on
the function prototype with the throw keyword.
If an error condition is not defined as interface use CLAM_ASSERT.
Every published exception must be caught. Not catching a published exception is a bug.
Catch the exceptions locally. Don’t group several functions that may throw exceptions on the same
try clause.
Catch the exceptions concretely. Catch for one concrete type of exception so you can recover for it.
When you can’t handle the exception locally, translate the exception to the caller context and
throw.

76 Debugging aids
There are some useful coding techniques for finding "well hidden" errors very quickly, that otherwise
might escape tests but can appear at most undesirable circumstances: sometimes this is called
defensive programming. Here we give some guidelines:

Systematically check that the state is consistent with asserts. Use the macro
CLAM_ASSERT(bool_expression, info message) for that. Its code will be removed
when compiling with optimization options, see the Error notification and managing for more
details.
The precondition and postcondition of a method are the restrictions --about the parameters and
object state-- that a method must satisfy at the entry and return points respectively. Is very
recommendable to use asserts for checking these conditions.
An invariant of an object is the set of restrictions that the state of the object will always satisfy
during its life. Write a method: bool FulfillsInvariant(void) that checks the most
relevant restrictions of the invariant and uses it like this :
CLAM_ASSERT(FulfillsInvariant(), "anything..."). Moreover, is very useful
that FulfillsInvariant() call the same method of its members if it exist.
Another possible signature for this method is : void Fulfillsinvariant(void) throw
ErrAssertionFailed . In that case the invariant conditions will be checked using
CLAM_ASSERT and no boolean return is necessary, this can be an advantage if we want each
condition to have a different informative message.
Companion removable code of a CLAM_ASSERT must be enclosed by CLAM_BEGIN_CHECK
and CLAM_END_CHECK macros that remove de code when some optimization options are
enabled.

CLAM_BEGIN_CHECKfor (int i=0; i<N; i++) { CLAM_ASSERT(array[i].IsValid(),"Invalid Element Found");}CLAM_END_CHECK

See examples of FulfillsInvariant() in the code of the library classes DynamicType
whose file is placed in src/Base/ or any XMLAdapter class that can be found at src/Storage/XML.

82

CLAM User and development documentation

http://mtg150.upf.es:8001/MTG-Classes-new/docs/www/ErrorHandling.pdf
http://mtg150.upf.es:8001/MTG-Classes-new/docs/www/ErrorHandling.pdf

XVII Error Handling

77 Use case analysis

77.1 Actors
There is two kinds of actors, humans actors and automated actors.

Automated actors: They detect the exceptional conditions, but also can receive exceptional
conditions notifications.

The CLAM library: The library we are developing. This also may include users add-ons that
match the interface we provide.
Third party libraries: They are libraries that our library uses. For example the Standard C++
Template Library, Fltk, OpenGL, XercesC++... They report the library error conditions to our
library.
User application: Source code that uses the library. Parts of CLAM may adopt this role when
they use some interface also offered to the outside of the world.

Human actors: They are only notifications receivers. Humans needs a text based interface.
Library programmer: That is a programmer that is developing CLAM library. He receives
notifications that are useful for debugging the library.
Library user (application programmer): The programmer of the final application. He
receives notifications that are useful for debugging its application.
The final application user: It is the last notification receiver when the application is released.

77.2 Stages
Human actors implied are different on the different stages of the library code:

Library development
Application development
Application usage

Each development stage has a different main human error notification receiver and different
behaviours are expected.

77.3 Mechanisms
There are three main error notification mechanisms:

A public exception is a documented error condition for a function that callers can manage in some
way. An exception object is thrown to let the caller know the error nature and its details in order to
recover properly. So, public exceptions are error notifications from one piece of code to other that
uses the former one. Receiver: Any automated actor.
An assertion is a check for some precondition for a piece of code. This precondition is suposed not
to occur, so failing the check means that a bug is happening and the following code will have
unexpected results. Receiver: Programmers, but via the application on release mode.
A user message is a direct text based notification to the user. Because this kind of notification is
application dependent, it will not be issued by the library. Receiver: The application user.

83

CLAM User and development documentation

78 Sanity checks and assertions

78.1 Expression assertions
You can create an assertion of an expression by using the Assert macro like that:

CLAM_ASSERT(i<mSize, "Accessing past the end of an array");
CLAM_ASSERT(mBuffer!=NULL, "Array buffer points to NULL");
return mBuffer[i];

On development stage, that is, with the DEBUG macro defined, what the programmer wants is to
interrupt the program where the assert failed in order to start debugging from this point.

In release mode, that is, when the DEBUG macro is not defined, we have choosed not to ignore
asserts, as does the default standard assert macro behaviour, because not fullfiling an assert can
lead to unpredictable state. But instead of aborting the program, it will throw an ErrAssertFailed
exception that can be catched. So an application catch the exception and, for example, do a backup of
the data or open an error reporter window before the application does finally crash.

78.2 Statement based ’assertions’ (checks)
CLAM_ASSERT macro is only useful for expressions. When you have a check whose code is not only
based on a simple expression, but in a complex statement, then you must use the following construct:

CLAM_BEGIN_CHECK
 for (int i=0; i<N; i++) {
 CLAM_ASSERT(array[i].IsValid(),
 "Invalid Element Found");
 }
CLAM_END_CHECK

78.3 Documenting assertions
When you add assertions to a function body about the status derived from caller context, and they are
not so obious conditions, you should documentate them as a function preconditions. You can use
the @pre doxygen directive for this.

This way you are telling the caller that it may assure to fullfil those preconditions.

78.4 Optimization and assertions
WARNING: Please, use this section only when you are very sure about, the needing of disabling one
assertions and checks on release mode. Mantaining the assertions on release code will give the final
application a chance for doing a ’gracefull crash’ by catching at top level the
CLAM::ErrAssertionFailed exception.

Because assertions do take time, on critical parts, you may decide that one assertion will not be part
of the release code by using the CLAM_DEBUG_ASSERT macro instead of the CLAM_ASSERT
macro.

There is also a debug only version for statement based asserts, for example:

CLAM_BEGIN_DEBUG_CHECK
 for (int i=0; i<N; i++) {
 CLAM_DEBUG_ASSERT(array[i].IsValid(),
 "Invalid Element Found");
 }
CLAM_END_DEBUG_CHECK

84

CLAM User and development documentation

Please, use CLAM_ASSERT, CLAM_BEGIN_CHECK and CLAM_END_CHECK instead of
CLAM_DEBUG_ASSERT, CLAM_BEGIN_DEBUG_CHECK and CLAM_END_DEBUG_CHECK every
where you can.

Another extreme option in order to speed up the library by disabling completely all the checks is to
compile defining the CLAM_DISABLE_CHECKS global macro which disables all the asserts and
checks.

So, debug-only checks and assertions are used to remove some selected checks on debug mode
only, and CLAM_DISABLE_CHECKS is used to remove all of them whatever the mode you are
compiling in.

78.5 Managing assertions from the application

Callback: You can use the SetAssertFailedHandler function in order to change the
function that is called when an assert is failed in debug mode.
Catching: In release mode, you can catch the ErrAssertionFailed exception at the top level
application in order to do some crash management and backups.

78.6 Debugging the release mode
Because there is some parts of the code that changes between the debug mode and the release mode,
some bug can happen on the release mode and not on the debug mode. We have left the possibility of
simulating asserts as they work on the release mode but being on the debug mode.

If you globally define the macro CLAM_USE_RELEASE_ASSERTS, the asserts will be defined as
it will be on the release mode althought the DEBUG macro is also defined. Then you may check
whether the bug is on the release assert code or not.

79 Exceptions

79.1 Previous note
Most of the guidelines provided here for exception use, are not still applied to the inner CLAM code.
By now only the Assert/Exception use cases have been revised.

Future CLAM releases will match more faithfully this and users must use the library as it would.

79.2 When to use Exceptions
Exception handling is a mechanism provided by C++ for recovering from an error situation which
solution is unknown in the context where the error condition is given but the solution is known
somewhere in a higher level in the call stack.

So, when a function meet an error condition, it must throw an exception only when:

The error is recoverable (if not, you might use an assertion instead)
Recovery strategy is not fully known on the error detection context.

In C programmers terms, exceptions usage in CLAM, as suggested by the standard, is like function
returned error codes but without interfering the return process and handling the error several function
calls thru the call stack.

In short, Exceptions and Assertions differ on the following:

85

CLAM User and development documentation

Exceptions are error conditions that may be anticipated, and recovered by the caller code.
But failed assertions are error conditions that you can recover from in runtime, they are detected
runtime bugs.

79.3 Contract between throwers and catchers
Because callers must know which exceptions are thrown by the method in order to catch and handle
them, exceptions are part of the called method prototype, say the contract with its client (the caller).

Forming part of this contract, exceptions must be present both on the prototype and the Doxygen
documentation.

/**
 * Gets a property
 * @param file The property file
 * @param value The property name
 * @returns The value of the property
 * @throws NotFound when the property is not present
 * @throws IOError when an error ocurs accesing the file
 */
std::string getProperty(const std::stream & file,
 const std::string & name)
 throw (NotFound, IOError)
{
 ...
 if (somecondition) throw NotFound(name);
}

Exceptions must be documented by using the Doxygen tag @throws . You also may explicitly
define the throws clause in the method prototype. Just like the previous listing does. You may want
to be less conservative and make the client assure that the key is always present before calling your
method. Then you will not throw any exception and you may use an assertion instead. A @pre entry
in the Doxygen documentation tells that the function needs to assure that the key exists. Just like the
following code.

/**
 * Gets a property
 * @param file The property file
 * @param value The property name
 * @returns The value of the property
 * @pre The property must exists on the file
 * @throws IOError when an error ocurs accesing the file
 */
std::string getProperty(const std::stream & file,
 const std::string & name)
 throw (IOError)
{
 ...
 CLAM_ASSERT(!somecondition, "Property not found");
}

Notice that the client will not be able to handle this error condition.
Responsability facts:

Not assuring the precondition means a bug in the client code.
Throwing an undocumented exception is a bug on the called function.
Not catching a documented exception is a bug on the client code unless published as thrown by the
client code.

86

CLAM User and development documentation

Exceptions must be documented as part of the interface because the client must handle this error
condition. Also, often assertions should be documentated because they require a precondition, that the
client must filfull before calling the method.

std::string getProperty(const std::stream & file,
 const std::string & name)
{
 try {
 ...
 if (somecondition) throw NotFound(name);
 }
 catch (IOError) {throw;} // rethrow it
 catch (NotFound) {throw;} // rethrow it
 catch (...) { // Any other, call unexpected
 std::unexpected();
 }
}

So any unespecified exception will be translated to an unexpected exception and it could not be
managed by any client.

79.4 Exception data and exception hierarchy
Throwers must provide enough information to the catchers for them to recover the best way. This
information must be meaningfull to C++ code because human readable messages are complicated to
parse and understand by handling code.

Human readable messages are useful for debugging and bugreporting tasks and asserts covers this
functionallity.

The catcher can get this information from several sources:

The exception type allows to do a first filter on what has happened and which error handling block
you must use.
Error codes can complement this first classification
Realtime information of the error can be attached as attribute members of the exception object.
This can help the catcher to improve the recovery.

79.5 Exception handling
All CLAM exceptions subclasses from CLAM::Err . CLAM::Err itself, subclasses from
std::exception .

As a general rule, you ought not to catch exceptions on a general way. That is caching elipsis (...),
std::exception , CLAM::Err ... Catching an exception means giving a solution for it. Probably,
if you are catching exceptions in a general way you aren not giving a suited solution.

So take a look to the function interface and catch only the documented exceptions providing a
solution for them.

Developers tend to group in a try statement a very large piece of code when they refuse to do any
handling. This is not what is intended with exceptions in CLAM. This kind of ’handling’ is for
assertions.

87

CLAM User and development documentation

79.6 Contextualization
What an exception means on a function context may not be the same on a higher context. For example,
an AudioIO processing configuration method may receive an exception about an already used selected
audio device. If you decide not to handle this error here, you may catch the device exception and throw
an exception about the configuration fail that has more sense on the context.

ErrInvalidParameter

Configure
AdquireDevice

ErrDeviceNotAvailable

Catch, Wrap
and Throw

Catch, Unwrap
and Recover

Throw

Figure 9: Contextualization example

Although throwing a different exception you may embed the old exception onto the newer one. If
the error handling code needs more information it can extract it from the embeded exception.

CLAM::Err defines the interface that allows to embed and disembed exceptions.

88

CLAM User and development documentation

XVIII Dynamic Types

80 DTs that derive from an interface class
Implementing such dynamic behavior and load/stores methods by default, just by deriving from a base
class, and declaring attributes using macros, requires a null efford to the user but leads, of course, to
certain limitations. The most important is the inheritance constraint, that can be expressed this way:
dynamic attributes can only be declared in a class that derives directelly from the DT base class. That
means: if we want to create a MyDynamicType class this must derive directly from DynamicType
and if we want to extend it, actually we can, but we cannot declare new dynamic attributes in the lower
class.

Anyway we found very interesting to give the ability of placing an interface class between the
concrete DT and the DT base class. This can be done using a new (and long) macro, for example:

class Audio: public ProcessingData {
public:
 DYNAMIC_TYPE_USING_INTERFACE (Audio, 4, ProcessingData);
 DYN_ATTRIBUTE (0, public, TData, SampleRate);
 // . . .
}

In this example, ProcessingData is an interface or pure abstract class. It is basically usefull for:
i) organizing concretes DTs, ii) forcing the existence of certain dynamic attribute XXX, by means of
declaring a virtual method GetXXX, and iii) forcing all derived classes to be DTs.

In the unlikely case of having to declare new interface classes, it is just matter of following the
pattern given by this example:

class ProcessingData : public DynamicType
{
public:
 /** Constructor of an object that will contain the number of
 * attributes passed by parameter */
 ProcessingData(const int n) : DynamicType(n) {};

 /** Copy constructor of a ProcessingData object */
 ProcessingData(const ProcessingData& prototype,
 bool shareData=false, bool deep=true) :
 DynamicType(prototype, shareData, deep){};

 virtual ~ProcessingData(){};
};

81 Typical Errors

81.1 Detected errors at compile time:
Lukily enough, we can detect a number of basic errors at compile time. This is possible by means of
an implementation with extensive use of template and function overloading techniques. Lets see these
detected errors with an example:

89

CLAM User and development documentation

81.1.1 Constructor errors

Here we will show two examples of typical errors related to the concrete DT constructor:

class Note : public DynamicType {
 public:
 DYNAMIC_TYPE (CNote, 5)
// ...

The compiler will report that the constructor name CNote doesn’t match with the class name Note.

class Note : public DynamicType {
 DYNAMIC_TYPE (Note, 5)
// ...

Here we have left the public: keyword before the DYNAMIC_TYPE macro, this will cause a
compilation error when it tries to instantiate an object of the type Note.

81.1.2 Attribute position out of bounds
class Note : public DynamicType
{
public:
 DYNAMIC_TYPE (Note, 4)
 DYN_ATTRIBUTE (0, public, float, Pitch)
 DYN_ATTRIBUTE (1, public, unsigned, NSines)
 DYN_ATTRIBUTE (2, public, ADSR, Envolvent)
 DYN_CONTAINER_ATTRIBUTE (3, public, std::list<Sine>, Sines, harmonic)
 DYN_ATTRIBUTE (4, private, Audio, Wave)
};

Here we have a too big identifier the compiler will complain saying that the following symbol is
undefined:
CLAM::MyDT::AttributePosition<6>::CompilationError_AttributePositionOutOfBounds

81.1.3 Attribute not defined

class Note : public DynamicType {
public:
 DYNAMIC_TYPE (Note, 5)
 DYN_ATTRIBUTE (0, public, float, Pitch)
 DYN_ATTRIBUTE (2, public, unsigned, NSines)
 // ...

Now we’ve left an empty position and it will complain about this symbol:
CLAM::MyDT::AttributePosition<1>::CompilationError_AttributeNotDefined

81.1.4 Duplicated attributes

class Note : public DynamicType {
public:
 DYNAMIC_TYPE (Note, 5)
 DYN_ATTRIBUTE (0, public, float, Pitch)
 DYN_ATTRIBUTE (0, public, unsigned, NSines)
 // ...

In this case we will get an error of duplicated methods that recive parameters of type:
AttributePosition<0> .

Morover, we’ll get this message if we define DYN_ATTRIBUTE(5,.) . Yes, it shoud be an
Attribute position out of bounds error, but we couldn’t manage to do so.

90

CLAM User and development documentation

81.2 Detected errors at run time
Within the CLAM library we have established two compilation macros that gives us a way of
choosing the degree of verifications to be done at run time. Of course going deeper into this issue is
not done in this section. You can find it at chapter XVII.

The important thing to know is which kind errors will be catch in run-time depending on the
compilation option choosen:

81.2.1 Compiling in debug mode (the macro _DEBUG defined)

In this mode, when adding an attribute for the first time, an assert will stop the execution if a dynamic
attribute name has been repeated, as in this example:

class Note : public DynamicType {
public:
 DYNAMIC_TYPE (Note, 5)
 DYN_ATTRIBUTE (0, public, float, Pitch)
 DYN_ATTRIBUTE (1, public, unsigned, Pitch)
 // ...

81.2.2 Compiling in a non debug (release) mode

we stay safe in this kind of things: the use of GetXXX or SetXXX of not instantiated attributes will
throw an assert exception.

81.2.3 Compiling for the best run-time efficency

For reaching the best run-time efficiency we compile in release mode and we must set the compilation
flag: CLAM_DISABLE_CHECKS.

In this case if the code calls a GetXXX or SetXXX where XXX is not instantiated we’ll get a
segmentation fault (if we are lucky!)

81.3 Non detected errors
Furthermore, there is a kind of errors that can not be detected even in debug mode: they are caused by
inconsistency of a reference to a dynamic attribute. It is very important, when writing a DT, to keep in
mind that any UpdateData() can cause a movement of every dynamic attribute, and so references
(pointers) to these attributes can turn out inconsistent. The first rule of thumb would be: never keep
references to dynamic attributes. But if this is really necessary, then we can take profit of the copy
constructor of the dynamic attribute, because all these movements are done calling this constructor. So
is a duty for the dynamic attribute copy constructor to keep the references to itself consistent.

There is another version of this error that is much more subtle: Imagine that we have a DT class
MyDynamicType with an attribute A. Now, myDT is an instance of this class, and the attribute A have
a method DoMess() : what it does is an UpdateData() of its parent (that is: the object myDT).
This can be catastrophic because this UpdateData can move the attribute A, invalidating the this
pointer of the method DoMess() in the middle of its execution. Ugly, indeed! If we need such object
coupling wetween a dynamic types an its attributes then the flag
SetPreAllocateAllAttributes() should be used. see section 83

91

CLAM User and development documentation

82 Constructors and initializers
This section addresses the issue of where to place initialization code for DTs and how to write new
constructors.

Basically what makes a DT different from a normal C++ class is that the first needs, at construction
time, initializing some static table (for type description information) in the case of being the first
instance of its class. And, of course, this job cannot be done at the DT base class instead.

The DYNAMIC_TYPE macro expands two constructors : the default one (without arguments) and
the default copy constructor (with argument of the same concrete type).

So what we have done is, in these automatically written constructors, is let them call an
initialization function, that will be written by the user. They are DefaultInit() and
CopyInit() , and are represented in the next class diagram. Notice that they are virtual and
implemented in the base, though they do nothing.

On the other hand, the macro writes a concrete (not virtual) method MandatoryInit() that
contains all the static table initializations. This is the sequence diagram for a normal DT constructor:

92

CLAM User and development documentation

In the case of the copy constructor, the DefaultInit() won’t be called, but the CopyInit()
will instead. In some cases we could want the same behavior for both initializators, then we could
implement the first and let the second call the first. In the next sequence diagram you can notice also
that the MandatoryInit() is not called, that’s only an implementation detail: when a copy
constructor occurs we are certain that at least one instance exist of the current concrete DT.

We can go further with the customization of our DTs: writing new constructors, (i.e. passing a
configuration object as parameter). Here we have to be very carefull following these steps:

Call the super constructor with a parameter N, where N is the number of dynamic attributes. (this
way: MyDynamicType() : DynamicType(N) { . } or otherwise using the interface class, if
this exist. An example of this can be found at this source file: src/Data/Spectrum.hxx)

Call the macro-expanded MandatoryInit()

93

CLAM User and development documentation

You may also want to call the user writed DefaultInit() .
This next figure illustrates the calling sequence of such a constructor. Notice that unlike the

previous ones, here almost all code is unpainted, and so meaning: written by the user.

83 Tuning a DT
In some ocasions the force of not moving dynamic attributes is stronger than the force of optimizing
the dynamic memory. This is specially true in cases of attributes that are large buffers (i.e. using
Array , std::vector .) or large composition structures. In other words: the innocent action of
adding a new attribute and updating data in some classes might carry a huge copy of buffers and tree
structures, thus making dynamic operations (adds and removes) extremelly inneficient.

That is the reason for introducing a global flag in the DT class that can be set with this method:
SetPreAllocateAllAttributes() . When this flag is set the next UpdateData() will

perform the last reallocation (if necessary) of the DT object life. From this point, the maximum data
memory is allocated and all dynamic attributes offsets are fixed and even further dynamic shape
changes (adds and removes) will not produce dynamic attributes movements.

Then, this kind of classes with ’heavy attributes’ should call
SetPreAllocateAllAttributes() in its DefaultInit() .

Notice that, by now, this flag cannot be unset: that is just because we couldn’t find a single use to
allow it.

84 Debugging aids and compilation flags
As it has been explained in section 35, the DT base class implements a Debug() method which will
display some internal information as well as will write a ’Debug.xml’ file with its xml content (only
when compiling with the flag CLAM_USE_XML).

The next example of console dump shows for each attribute features like its size in bytes, name, and
its current pointer. At the left side of each attribute information we can read ’--’ or with some dash
substituted with an ’A’ or ’R’. This are the added and removed flags, meaning that its attribute will
need memory update in the next UpdateData() . Is important to note that when an attribute XXX is

94

CLAM User and development documentation

marked in one or other way, HasXXX() will return false.

Class Name: Dyn at: 0012FEB4
[#attr.], dyn offs, name, type, {comp,dynType,ptr,strble}, exist, size, memPos

{ size, allocatedSize } = { 28 , 0 }

 -R [0] 0 , Int , int , {0,0,0,0} , 1 , 4 , 00892F38
 A- [1] 4 , MyA , CompWithBasics8 , {0,0,0,0} , 1 , 24 , 00892F3C
. . .

Apart from CLAM_DIABLE_CHECKS that will increase a lot the run-time performance of DTs,
exists another one: CLAM_EXTRA_CHECKS_ON_DT that will do exactly the opposite, but at least will
automatically check the DT invariant in every DT operation (adds, update data, etc). This can be very
usefull if we are getting paranoids about some possible bug in the DTs and for finding it, if this is the
case (hopefully not).

85 Pointers as dynamic attributes
This is an easy point, right now: pointers as dynamic attributes are not supported. Anyway we have
foreseen the use of pointers in two scenarios: as references to the same hierarchic structure and for
holding polimorphic types. This will involve the introduction of a couple of new macros, and these
changes are scheduled for a near future.

86 Copies of DTs
There are several ways of getting DTs copies, all of them implemented at the DT base class:

DeepCopy() : this method is declared in the Component abstract class, so it returns a Component
type and a cast can be necessary. As its name says, it behaves deeply or in a recursive way. It’s done
following these rules:

Copying each attribute that is Components (i.e. DTs) calling its DeepCopy() .

Copying the rest of non-Component attributes using its copy-constructor.

The CopyInit(const DynamicType&) method is called for non-dynamic attributes copies.
This method can be overrided in the concrete class, see section 89 for more details about this.

Copy constructor : it just calls the DT DeepCopy() method.
ShallowCopy() : it calls the ShallowCopy() for each Component attribute and the copy-

constructor for the rest. The CopyInit() is also called.

87 DTs and XML

87.1 The default XML Implementation for DynamicTypes
Any Dynamic Type has a default XML implementation. By default, all the dynamic attributes are
stored as XML elements with the attribute name as tag name and following the order specified in their
declaration. If a dynamic attribute is not instantiated, it is not stored.

On loading, first all dynamic attributes are instantiated, and, then, each one are tried to be load.
Those attributes that are not in the XML source are marked as removed.

95

CLAM User and development documentation

87.2 XML aware dynamic attributes
Every dynamic attribute is stored as element but the way the attribute content is stored depends on the
kind of object.

Dynamic attributes that are components have direct XML support and are stored recursively.
Basic objects like C primitive types and some others (std::string,

CLAM::Complex<TData>, CLAM::Polar<TData>, CLAM::Point<TData> ...) use their
extraction and insertion operator to generate plain content.

You can define any class, for example MyBasicType , to be used in XML as a basic type doing the
following:

defining their extraction (>>) and insertion (<<) operators over std::streams
and using the following macro call at namespace level:

CLAM_TYPEINFOGROUP(CLAM::BasicCTypeInfo, MyBascType);

About the insertion and extractor operators, you must be careful to choose a parseable format that
will allow not to waste with the extractor more input than the necessary from the stream.

Although char* has been defined as a basic type to easily inserting string literals, do not use it to
load because it may lead to buffers overflows. Use the std::string class and then extract a char*
from it if you need it.

Neither char* nor std::string works loads correctly with strings containing spaces, because their
extraction operators only loads the first word. Use CLAM::Text which supports multiword strings.

STL compliant containers have XML support if they are declared as
DYN_CONTAINER_ATTRIBUTE.

When the contained class is a component, then each of the contained objects are stored as elements
inside the container element. The fourth macro parameter is for the subitems tag name. So:

DYN_CONTAINER_ATTRIBUTE(1, public, std::list<MyComponent>, ComponentList, AComponent);

will look like

<ComponentList size=’10’>
 <AComponent> ... </AComponent>
 <AComponent> ... </AComponent>
 ...
 <AComponent> ... </AComponent>
</ComponentList>

And when the contained class is a basic type, all the container items will be stored in a single XML
element separated by spaces.

DYN_CONTAINER_ATTRIBUTE(1, public, std::vector<double>, LeafList, Ignored);

will look like

<LeafList size=’256’>342.243 2342.252 0.234 0 0</LeafList>

Note that in this case the last macro parameter is ignored.

87.3 Customization basics
Let see a sample Dynamic Type class:

96

CLAM User and development documentation

class ConcreteDT : public CLAM::DynamicType
{
public:
 DYNAMIC_TYPE(ConcreteDT, 5);
 DYN_ATTRIBUTE (0, public, DummyComponent, MyComponent);
 DYN_ATTRIBUTE (1, public, Array<Complex>, MyArray);
 DYN_ATTRIBUTE (2, public, FooDTClass, MyDynType);
 DYN_CONTAINER_ATTRIBUTE(3, public, std::list<int>, MyList);
 DYN_ATTRIBUTE (4, public, int, MyInt);
 public:
 virtual ~ConcreteDT() {}
 protected:
 void DefaultInit()
 {
 AddMyDyn();
 AddMyA();
 UpdateData();
 }
 // Some non dynamic attributes
 private:
 FooComponent mExtraNonDynamicAttribute;
};

This Dynamic Type, as is, will generate default XML. In order to customize it we have to redefine
two storage related methods:

void MyDyn::StoreOn(Storage & s);
void MyDyn::LoadFrom(Storage & s);

When a MyDyn is stored/loaded on/from a Storage, and the Storage detects that it is a component, it
calls those functions in order to store/load all meaningful MyDyn subparts if it has any.

So by redefining those functions we will change its XML representation.

87.4 Reordering and skipping
Dynamic Types macros expand some useful methods that allow simplifying the customization.

For each dynamic attribute named XXX, dynamic type macros expand the methods:

void ConcreteDT::StoreXXX(Storage & s);
void ConcreteDT::LoadXXX(Storage & s);

Using such methods you can easily store/load a concrete dynamic attribute separately. Be careful,
LoadXXX requires the attribute XXX to be instantiated before calling it and it will mark it
automatically as removed if the attribute is not present in the XML file. It is important to store the
attributes in the same order you load them.

The following example will store and load its attributes in the inverse order to the default one, and
skips the third attribute (MyDynType).

void ConcreteDT::StoreOn(CLAM::Storage & storage) {
 StoreMyInt(storage);
 StoreMyList(storage);
 // MyDynType is not stored
 StoreMyArray(storage);
 StoreMyDummyComponent(storage);
}

void ConcreteDT::LoadOn(CLAM::Storage & storage) {
 // First of all asure that all attributes are instantiated
 AddAll()

97

CLAM User and development documentation

 UpdateData();
 // Then load them
 LoadMyInt(storage);
 LoadMyList(storage);
 // MyDynType is not loaded
 LoadMyArray(storage);
 LoadMyDummyComponent(storage);
}

87.5 Recalling the default implementation
StoreAllDynAttributes() and LoadAllDynamicAttributes() are another macro
expanded methods. They are called from the default StoreOn and LoadFrom implementation. So, by
calling them we can reproduce them and it is easy to add non dynamic subparts before or after them or
forcing some attributes to be or not present before them. The first step of
LoadAllDynamicAttributes() is to instantiate all the dynamic attributes that will be marked
as erased if they are not in the XML document.

87.6 Adding content not from dynamic attributes
If you simply want to add a non dynamic attribute to the XML representation, you may call those
expanded functions and then using a suited XML adapter for the attribute and store it. Refer on how to
define the XML format for a normal (non DynamicType) Component to know about those adaptators
and how they are used.

The following example stores two extra items on the XML. An existing member of the class
(mExtraNonDynamicAttribute) and a literal string as an XML attribute (the false value).

void ConcreteDT::StoreOn(CLAM::Storage & storage) {
 // Store a temporary object in the first place
 CLAM::XMLAdapter<char*> adapter1("Addedcontent", "Added", false);
 storage.Store(&adapter1);

 // Call the default implementation
 StoreAllDynAttributes();

 // Store a non dynamic attribute member
 CLAM::XMLComponentAdapter adapter2(mExtraNonDynamicAttribute,
 "ExtraNonDynamic", true);
 storage.Store(&adapter2);
}

void ConcreteDT::LoadOn(CLAM::Storage & storage) {
 // std::string is not vulnerable to buffer overflows on loading
 std::string foo; // A temp
 CLAM::XMLAdapter<std::string> adapter1(foo, "Added", false);
 storage.Load(&adapter1);

 LoadAllDynAttributes();

 CLAM::XMLComponentAdapter adapter2(mExtraNonDynamicAttribute,
 , "ExtraNonDynamic", true);
 storage.Load(&adapter2);
}

98

CLAM User and development documentation

87.7 Storing not as XML elements or changing the tag name
Of course, we can also use Adapters with the dynamic attributes instead of using StoreXXX and
LoadXXX. This is useful to store a dynamic attribute as XML attribute or XML plain content or to
change the name from the one the attribute has. Again, refer to the XML developer guide.

When using adapters with dynamic attributes you must take care of some dynamic attributes tasks:

When storing a dynamic attribute XXX you must check that it is instantiated using the function
HasXXX.
When loading you must check that the Storage::Load returns true. When it returns false it is
advisable to mark it as removed.

void ConcreteDT::StoreOn(CLAM::Storage & storage) {
 StoreMyDummyComponent(storage);
 StoreMyArray(storage);
 StoreMyDynType(storage);
 StoreMyList(storage);

 // MyInt is stored as an attribute (the default is element
 // and with a different name (’Size’).

 if (HasMyInt()) {
 CLAM::XMLAdapter<int> adapter(GetMyInt(), "Size", false);
 storage.Store(&adapter);
 }
}
void ConcreteDT::LoadOn(CLAM::Storage & storage) {
 // First of all asure that all attributes are instantiated
 AddAll()
 UpdateData();
 // Then load them
 LoadMyDummyComponent(storage);
 LoadMyArray(storage);
 LoadMyDynType(storage);
 LoadMyList(storage);

 // MyInt is loaded as an attribute (the default is element
 // and with a different name (’Size’).

 CLAM::XMLAdapter<int> adapter(GetMyInt(), "Size", false);
 if (!storage.Load(&adapter)) {
 RemoveMyInt();
 }
}

87.8 Keeping several alternative XML formats
Normally you will define the storage customization on the same concrete dynamic type class. But
sometimes, you want to keep the default implementation o several customized implementations.

A good way of doing this is by subclassing the concrete Dynamic Type and redefining the storage
related methods as above but in the subclasses.

99

CLAM User and development documentation

XIX Processing Data

88 Basic structural aspects II
A data storage class derives publicly from ProcessingData. Thus, it is a concrete Dynamic Type class
and must use the DYNAMIC_TYPE_USING_INTERFACE macro.

Ex:

class SpectralPeak: public ProcessingData
{
public:
 DYNAMIC_TYPE_USING_INTERFACE (SpectralPeak, 6, ProcessingData);
 DYN_ATTRIBUTE (0, public, EScale, Scale);
 DYN_ATTRIBUTE (1, public, TData, Freq);
 DYN_ATTRIBUTE (2, public, TData, Mag);
 DYN_ATTRIBUTE (3, public, TData, BinPos);
 DYN_ATTRIBUTE (4, public, TData, Phase);
 DYN_ATTRIBUTE (5, public, int, BinWidth);
 (.)

Remember that all attributes registered using the DYN_ATTRIBUTE macro are granted associated
Getters and Setters.

89 Constructors and initializers
Apart from the default constructor (already available as a result of the Dynamic Types macros), other
constructors may be implemented. All these constructors must call the constructor of the Processing
Data base class using the member initialisation syntax and passing the number of Dynamic Attributes
as parameter.

Ex:

Segment::Segment(const SegmentConfig &newConfig):ProcessingData(6)
{
(.)

Apart from that, these constructors must call a macro-derived method called
MandatoryInit(), which is in charge of initialising concrete Dynamic Type’s internal structure.

Another initializer that is often useful is the DefaultInit() method. This method has to be
implemented by the developer and is in charge of initializing default attributes and values. This
method is automatically called from the Processing Data’s default constructor and may also be called
from all other constructors.

The most usual non-default constructors that a Processing Data class is bound to have are the Copy
constructor and the Configuration constructor. The former is already implemented in the Processing
Data base class and this implementation is sufficient as long as all attributes of the concrete class are
Dynamic and require no initialisation. If not (for example if the class has a non Dynamic member), the
developer may make use of the CopyInit() method. This method has to be implemented by hand,
but is automatically called from the macro derived Copy constructor.

Ex:
The Segment PD class has a non-dynamic member called pParent. Thus, the copy initializer is

implemented as:

100

CLAM User and development documentation

void Segment::CopyInit(const Segment& prototype)
{
 pParent=prototype.pParent;
}

The configuration constructor is sometimes desirable for constructing a Processing Data out of its
associated configuration object or out of some sort of initial value (flags, size.). In this case the
constructor must explicitly call the MandatoryInit() method and then call any other necessary
configuration methods.

Ex:

Spectrum(const SpectrumConfig &newConfig) : ProcessingData(12)
{
 MandatoryInit();
 Configure(newConfig);
}

90 Private members with public interface
In many cases, it is desirable to keep some members private and offer an accessory public interface for
modifying their value. This is especially so if the member is related to some structural aspect of the
processing data and a modification in its value implies a re-structuring of the object itself. Imagine, for
example a Size attribute that is related to the size of the buffers in a PD class. If the user modifies
this attribute, we want to keep the size of the buffers consistent.

In that case, it is recommended you keep the member as private and declare it adding the prefix ‘pr’
before its common name.

Ex:

class Spectrum : public ProcessingData
{
public:
 DYNAMIC_TYPE_USING_INTERFACE (Spectrum, 12, ProcessingData);
 ...
private:
 DYNAMIC_ATTRIBUTE (2, private, int , prSize);
 ...

Then you need to offer the public interface implementing by hand the appropriate Setter and Getter.
Ex:
In the previous example, that of the spectrum, the public interface is offered through the GetSize()

and SetSize() methods, implemented as follows (see how consistency is always kept between prSize
member and size of all existing buffers:

int Spectrum::GetSize() const
{
 int size= GetprSize();
 CLAM_BEGIN_CHECK
 if(HasMagBuffer() && GetMagBuffer().Size())
 CLAM_ASSERT(GetMagBuffer().Size() == size,
 "Spectrum::GetSize(): Mag size and Size mismatch.");
 if(HasPhaseBuffer() && GetPhaseBuffer().Size())
 CLAM_ASSERT(GetPhaseBuffer().Size() == size,
 "Spectrum::GetSize(): Phase size and Size mismatch.");
 if(HasComplexArray() && GetComplexArray().Size())
 CLAM_ASSERT(GetComplexArray().Size() == size,
 "Spectrum::GetSize(): Complex size and Size mismatch.");
 if(HasPolarArray() && GetPolarArray().Size())
 CLAM_ASSERT(GetPolarArray().Size() == size,

101

CLAM User and development documentation

 "Spectrum::GetSize(): Polar size and Size mismatch.");
 if (HasprBPFSize()) {
 if(HasMagBPF() && GetMagBPF().Size())
 CLAM_ASSERT(GetMagBPF().Size() == size,
 "Spectrum::GetSize(): MagBPF size and Size mismatch.");
 if(HasPhaseBPF() && GetPhaseBPF().Size())
 CLAM_ASSERT(GetPhaseBPF().Size() == size,
 "Spectrum::GetSize():PhaseBPF size and Size mismatch.");
 }
 CLAM_END_CHECK
 return size;
}

void Spectrum::SetSize(int newSize)
{
 SetprSize(newSize);
 if(HasMagBuffer()) {
 GetMagBuffer().Resize(newSize);
 GetMagBuffer().SetSize(newSize); }
 if(HasPhaseBuffer()) {
 GetPhaseBuffer().Resize(newSize);
 GetPhaseBuffer().SetSize(newSize); }
 if (HasPolarArray()) {
 GetPolarArray().Resize(newSize);
 GetPolarArray().SetSize(newSize); }
 if (HasComplexArray()) {
 GetComplexArray().Resize(newSize);
 GetComplexArray().SetSize(newSize); }
 if (!HasprBPFSize()) {
 if (HasMagBPF()) {
 GetMagBPF().Resize(newSize);
 GetMagBPF().SetSize(newSize); }
 if (HasPhaseBPF()) {
 GetPhaseBPF().Resize(newSize);
 GetPhaseBPF().SetSize(newSize); }
 }
}

91 Configurations
PD classes may also use associated configuration classes in a similar way to the Processing Objects.
As it has been shown up until now, both informative and structural attributes of a PD class can be
added as regular attributes. The only need for offering an associated configuration class is if a PD class
has too many of these attribute to handle them one by one and it becomes more ’friendly’ to use a
configuration wrapper. As a rule of thumb, you can say that if more than one non-default constructor
needs to be implemented for a PD class you should start thinking of implementing an associated
Configuration. Thus, configurations are only seen as initialization shorthands and should therefore
never be stored inside a PD class.

Configuration classes derive from the ProcessingDataClass.
Ex:

class SpectrumConfig : public ProcessingDataConfig
{
public:
 DYN_CLASS_TABLE_USING_INTERFACE(SpectrumConfig, 5, ProcessingDataConfig);
 DYN_ATTRIBUTE (0, public, EScale, Scale);
 DYN_ATTRIBUTE (1, public, TData, SpectralRange);
 DYN_ATTRIBUTE (2, public, int, Size);
 DYN_ATTRIBUTE (3, public, SpecTypeFlags, Type);

102

CLAM User and development documentation

 DYN_ATTRIBUTE (4, public, int, BPFSize);
 protected:
 void DefaultInit();
 void DefaultValues();
};

92 Customizing XML output
If you want to have a specific XML output that does not exactly match the one automatically derived
and mentioned in 43 you have two options:

1) If the class you are dumping is not part of the CLAM core you may override the StoreOn()
method and implement it by hand.

2) Otherwise you are suggested to write another PD class that fits your needs and acts as an adapter
of the real data you have on the existing PD class and the desired output.

93 Specific attributes: flags and enums
When implementing a PD class it is common that you need to implement an associated enumeration or
flag. If you use a standard C++ enum or std::bitset you will get no more than a meaningless integer
representation. CLAM::Enum and CLAM::Flags<N> will give you a proper string representation. See,
Doxygen documentation for these base classes.

It is far beyond the scope of this document to go into the implementation details of both classes and
the developer is suggested to implement his own Enum or Flag class departing from an existing class.
For the case of Enums, let’s see the EInterpolation class:

Ex:
The following code is included in the .hxx file:

class EInterpolation: public Enum
{
public:
 static tEnumValue sEnumValues[];
 static tValue sDefault;
 EInterpolation() : Enum(sEnumValues, sDefault) {}
 EInterpolation(tValue v) : Enum(sEnumValues, v) {};
 EInterpolation(std::string s) : Enum(sEnumValues, s) {};

 typedef enum {
 eStep,
 eRound,
 eLinear,
 eSpline,
 ePolynomial2,
 ePolynomial3,
 ePolynomial4,
 ePolynomial5,
 ePolynomialn
 } tEnum;

 virtual Component* Species() const
 {
 return (Component*) new EInterpolation;
 };
};

103

CLAM User and development documentation

and the following in the .cxx:

Enum::tEnumValue EInterpolation::sEnumValues[] = {
 {EInterpolation::eStep,"Step"},
 {EInterpolation::eRound,"Round"},
 {EInterpolation::eLinear,"Linear"},
 {EInterpolation::eSpline,"Spline"},
 {EInterpolation::ePolynomial2,"2ond_order_Polynomial"},
 {EInterpolation::ePolynomial3,"3rd_order_Polynomial"},
 {EInterpolation::ePolynomial4,"4th_order_Polynomial"},
 {EInterpolation::ePolynomial5,"5th_order_Polynomial"},
 {EInterpolation::ePolynomialn,"nth_order_Polynomial"},
 {0,NULL}
};

Enum::tValue EInterpolation::sDefault = EInterpolation::eLinear;

Deprecated: since the flags application is not available. Meanwhile, see the doxygen
documentation for an example.

For the case of flags, the easiest way of writing your own class is making use of the flag generation
script available at mtg150.upf.es/flags.

104

CLAM User and development documentation

XX XML
This section is intended to explain underlaying mechanisms that are useful to know when serializing
XML of non-DynamicType Components. DynamicTypes are components that have already a default
XML implementation. If you don’t like that default DynamicType implementation them you should
try the extension mechanisms explained also on the DynamicType chapter. When those extensions are
not enough, then you should try this.

94 Components and XML
Any Component must implement two virtual methods related to storage stuff:

void MyComponent::StoreOn(Storage & s) const;void MyComponent::LoadFrom(Storage & s);

Those methods are suposed to store and load onto/from the storage all the inner members by the
component.

When is this StoreOn/LoadFrom method used? When a component is stored/loaded onto/from an
storage, the storage detects that this object is also a Component and then calls StoreOn/LoadFrom
method in order to allow the component to also store its childs.

Imagine the following scenario:

o1, Component containing o2, o3 and o4
o2, Component containing o5
o3, Component containing no subcomponent
o4, Non Component
o5, Non Component

The process of storing o1 on a Storage could be the one depicted here:

105

CLAM User and development documentation

StoreOn(storage)

o1

Store(o2)

o3o2

StoreOn(storage)
Store(o5)

Store(o3)
StoreOn(storage)

Store(o4)

StorageUser

Dump(o1,name,file)

The load process is the same. You can check the return value for the Storage::Load function in order
to know if the object was present or not in the Storage.

95 XML Adapters
Both methods, Storage::Load and Storage::Store receive an MTG::Storable as
parameter. Moreover, this parameter will be ignored if it doesn’t fulfills the concrete Storable interface
for the format of the concrete Storage interface. For the MTG::XMLStorage, the Storable interface is
MTG::XMLable.

106

CLAM User and development documentation

Storage

+Store(object:Storable*)
+Load(object:Storable*): bool

XMLStorage

+Store(object:Storable*)
+Load(object:Storable*): bool

«not implemented»
SDIFStorage

+Store(object:Storable*)
+Load(object:Storable*): bool

Storable

«not implemented»
SDIFable

«not implemented»
CSourceStorable

«not implemented»
MathLabStorable

XMLable

+IsXMLAttribute(): bool
+IsXMLElement(): bool
+XMLName(): char *
+XMLContent(): std::string
+XMLContent(istream &): bool

Just in order you don’t have to derive every object from that interface, a pool of adapters are
available in order to make your objects fullfill the MTG::XMLable interface.

In short, your implementation of StoreOn and LoadFrom methods will consist on selecting the
suited XML adapter to wrap each subpart of your Component and call Storage::Store or Storage::Load
having it as parameter.

As a general rule, adapters take several parameters. Former parameters describe the adaptee (for
example a reference to it), and later parameters adds the format dependent information.

For XML, the format dependent information is the name and a boolean.

If the name is a NULL pointer, the adapters is considered plain text content. (Both, attributes and
elements, must have names)
If not, the boolean determines whether is an element or not (thus, it is an attribute)

Those parameters have default values to NULL and false respectively so a tipical Adapter
constructor definition would be:

MyAdapterClass(/* Here goes the adaptee info */ , char * name = NULL, bool beElement = false);

Important: The adapter only copies the pointer to the the null-terminated string, not a copy of it. So
it is dangerous to delete or modify this string until the adapter has been stored on the Storage.

The whole set of adapter classes is shown in the following UML class diagram:

107

CLAM User and development documentation

Storable

XMLable

+IsXMLAttribute(): bool
+IsXMLElement(): bool
+XMLName(): char *
+XMLContent(): std::string
+XMLContent(istream &): bool

SDIFable

BasicXMLable
+myName: char*
+amIXMLElement: bool
+IsXMLAttribute(): bool
+IsXMLElement(): bool
+XMLName(): char *
+XMLContent(): std::string
+XMLContent(istream&): bool

XMLAdapter
+m_adaptee: T
+XMLContent(): std::string
+XMLContent(istream&): bool

T:class

 ...

XMLComponentAdapter
+m_adaptee: Component&
+XMLContent(): std::string
+XMLContent(istream&): bool

T:class
XMLIterableAdapter

+m_adaptee: T
+XMLContent(): std::string
+XMLContent(istream&): bool

T:class

XMLArrayAdapter
+m_adaptee: T
+m_size: unsigned
+XMLContent(): std::string
+XMLContent(istream&): bool

T:class

95.1 Simple types adapters
We consider a simple type that one that implements the insertion operator (<<) and the extraction
operator (>>) to a C++ ostream. Most basic C types define it (int, float, char, char* ...).

Also user classes and structures can define its own insertion operator. Because simple type adapters
are based on such operator to extract the XML content, they are useable with a large amount of objects
not being MTG specific.

You also need to instantiate a CLAM::TypeInfo<T> for this type, having StoreAsLeaf typedef
defined as StaticTrue . You can simply instantiate this using the macro statement:

CLAM_TYPEINFOGROUP(CLAM::BasicCTypeInfo, YourClass)

For any ’simple type’ in this sense, you may adapt it with a XMLAdapter<T> where T is the type.

class MyComponent : public CLAM::Component {
 int i;
 double d;
 char c;
 std::string s;
public:

108

CLAM User and development documentation

 MyComponent()
 {
 i = 3;
 d = 3.5;
 c = ’a’;
 s = "Hello";
 }

 void StoreOn(CLAM::Storage & storer) const
 {
 // Storing an integer as plain content
 XMLAdapter<int> intAdapter(i);
 storer.Store(intAdapter);
 // Storing a double as an attribute
 XMLAdapter<double> doubleAdapter(d, "myDouble");
 storer.Store(doubleAdapter);

 // Storing a char as a element
 XMLAdapter<char> charAdapter(c, "myChar", true);
 storer.Store(charAdapter);

 // Storing an standard library string as an attribute
 XMLAdapter<std::string>(s, "myString");
 storer.Store(strAdapter);
 }
 void LoadFrom(CLAM::Storage & storer)
 {
 // Storing an integer as plain content
 XMLAdapter<int> intAdapter(i);
 storer.Load(intAdapter);

 // Storing a double as an attribute
 XMLAdapter<double> doubleAdapter(d, "myDouble");
 storer.Load(doubleAdapter);

 // Storing a char as a element
 XMLAdapter<char> charAdapter(c, "myChar", true);
 storer.Load(charAdapter);

 // Storing an standard library string as an attribute
 XMLAdapter<std::string>(s, "myString");
 storer.Load(strAdapter);
 }
};

The result of storing this component would be:

 <Document myChar=’a’ myString=’Hello’>
 3
 <myDouble>3.5</myDouble>
 </Document>

Notes:

We are using std::string and not a char pointer. Char pointer is limited to having a buffer limit that
can be surpassed when loading an arbitrary content. std::string is safe.
std::string and char* extraction operator reads only a word while insertion operator writes every
word it finds in the string. In order to be loaded properly, string cannot contain any space in C
sense (spaces, tabs, returns...)
If your string must contain such space caracters, you can use the CLAM::Text class instead

109

CLAM User and development documentation

std::string which feeds all the available content incluiding spaces.

95.2 Simple type C array adapters
This adapter (XMLArrayAdapter) adapts dinamically an array of simple type objects. The content is
generated concatenating of the individual objects separated by an space.

The XML array adapter constructor is declared this way:

XMLArrayAdapter(T* adaptee, unsigned size, char * name = NULL, bool beElement = false);

See the following example of the XMLArrayAdapter usage:

// Supose that MyComponent has as fields mSize and mBuffer
void MyComponent::StoreOn(CLAM::Storage & storer) const
{
 XMLAdapter<int> sizeAdapter(mSize, "Size", false);
 storer.Store(intAdapter);

 XMLArrayAdapter<double> doubleAdapter(mBuffer, mSize, "Buffer", true);
 storer.Store(doubleAdapter);
}

void MyComponent::LoadFrom(CLAM::Storage & storer) {

 XMLAdapter<int> sizeAdapter(mSize, "Size", false);
 storer.Load(intAdapter);

 if (mBuffer) delete [] mBuffer;
 mBuffer = new double[mSize];

 XMLArrayAdapter<double> doubleAdapter(mBuffer, mSize, "Buffer", true);
 storer.Load(doubleAdapter);
}

95.3 Component adapters
Previous adapters only adapts XML data with trivial structure. In order to have a more structured data,
Components are needed. Although you can adapt a Component with a XML adapter, the XMLStorage
only sees that the adapter is not a Component and then it doesn’t look for subitems.

A XMLComponentAdapter is an adapter that it is itself a Component and adapts a Component. So,
when the storage confirms that the Adapter is a Component and executes the StoreOn method, the
adapter forward the calling to its adaptee.

110

CLAM User and development documentation

XMLStorage

+Store(object:Storable*)

if object is not an XMLable
 return;

if object->IsXMLElement() {
 store it as element
 if object is a Component
 object.StoreOn(*this)
 }
else if object->IsXMLAttribute()
 store it as attribute
else {
 store it as content
 if object is a Component
 object.StoreOn(*this)
 }

XMLComponentAdapter usage is very similar to other adapters usage. You may obtain very
variated behaviours:

When you store a component as element, element tags with the name are written and all its
subitems will be placed inside.

<theParent aSibblingAsAtrib="aSibbling"> <aSibbling>sibbling</aSibbling> <theComponent aSubitemAsAtrib="subitem"> theContent subitemAsPlainContent <aSubitemAsElem>subitem</aSubitemAsElem> </theComponent></theParent>

When you store a component as plain content, its subitems will be placed on the same level than
the component would be.

<theParent aSibblingAsAtrib="aSibbling" aSubitemAsAtrib="subitem"> <aSibbling>sibbling</aSibbling> theContent subitemAsPlainContent <aSubitemAsElem>subitem</aSubitemAsElem></theParent>

If you store a component as an XML attribute the XMLStorage will not recurse to subitems as it
does with elements and plain content.

<theParent aSibblingAsAtrib="aSibbling" theElement="theContent"> <aSibbling>sibbling</aSibbling></theParent>

111

CLAM User and development documentation

95.4 Loading Considerations
Keep in mind those considerations related on how to make things deserialized back to the system:

If you use the insertion operator provide a complementary extraction operator that would not
consume extra input and test that it works with generated output.
Extraction operator must manage stream error flags.
Strings with spaces: Don’t store strings containing spaces. When parsing them, the standard C++
library >> operator gets only the first word: Use the CLAM::Text class instead!
CLAM::Text loading will consume all the contiguous content left, so, if you store it as a XML
content, don’t put XML content sibblings afterwards.
Contiguous plain content: Several contiguous plain content nodes are separated with spaces.
If you need them, you can give hints from the StoreOn to the LoadFrom, for example, inserting in
the XML the number of elements for a variable length collection of subitems, telling which
subitems are instanciated or no or not.

XXI C pre-processor macros defined and used by
CLAM sources
We define a set of C preprocessor macros that pollute the global namespace, so we document them
here explicitly, for minimizing the possibility of macro names clashes. Some of them are global flags
that affect the entire library behaviour, some other are part of the DynamicType API, a few needed for
ensuring cross-platformness (especially math constants) and some macros that give support to
Defensive programming techniques. Besides, we also rely on some macros to be defined by the
compiler or development environment, to select a particular behaviour for a given platform.

96 Global flags
TODO Should be moved

You can define these macros in the project (VisualC++) or makefile (GNU) in order to change
CLAM behaviour.

CLAM_EXTRA_CHECKS_ON_DYNAMIC_TYPES
Define it to perform paranoid very very slow checks on dynamic types.

CLAM_USE_STL_ARRAY
Define it to use the CLAM::Array implementation based on the STL std::vector

97 Cross-platformness macros
These macros can be used inside user code.

PI
PI number in double precission

TWO_PI
Two times PI number in double precission

112

CLAM User and development documentation

98 Dynamic Types Macros
All these macros are more accurately documented in Dynamic Types reference.

DYNAMIC_TYPE(newClass, nAttributes)
Insert it inside a DynamicType subclass definition in order to generate some macro expanded

functions.
DYNAMIC_TYPE_USING_INTERFACE(newClass, nAttributes, subClass)

Insert it inside a DynamicType descendant class definition in order to generate some macro
expanded functions.
DYN_ATTRIBUTE(order, access, type, name)

Inside a dynamic type class definition, it defines a dynamic attribute. See Dynamic Types.
DYN_CONTAINER_ATTRIBUTE(order, access, type, name,elemName)

Inside a dynamic type class definition, it defines a dynamic attribute with STL container like
interface. See Dynamic Types.
CLAM_TYPE_INFO_GROUP(group, class)

Defines the class CLAM type information like the one defined in the group. (ie.
BasicCTypeInfo, ContainerTypeInfo...) See DynamicType-XML

99 Defensive programming macros
Although some may consider an oxymoron to use C preprocessor macros for defensive programming
they are very useful for giving users enough flexibility to enable or disable code auto-checking:

CLAM_ASSERT(expressionToBeTrue, messageWhenFalse)
A normal CLAM assert. See Error handling.

CLAM_BEGIN_CHECK
Marks the start of check related code. See Error handling.

CLAM_END_CHECK
Marks the end of check related code. See Error handling.

CLAM_DEBUG_ASSERT(expressionToBeTrue,messageWhenFalse)
A debug only CLAM assert. See Error handling.

CLAM_DEBUG_BEGIN_CHECK
Marks the start of debug only check related code. See Error handling.

CLAM_DEBUG_END_CHECK
Marks the end of debug only check related code. See Error handling.

CLAM_BREAKPOINT
Sets a compiler independent execution breakpoint.

100 preinclude.hxx Macros
These macros deal with system dependant issues and are defined (or not) in the
src/Defines/{platform name}/preinclude.hxx file. This file is generated by GNU
autoconf on UNIX platforms, and is hardcoded for specific platforms such as Microsoft Windows.

HAVE_NON_COMPLIANT_STANDARD_LIBRARY
HAVE_STANDARD_VECTOR_AT
HAVE_STANDARD_SSTREAM
HAVE_STANDARD_SSTREAM_STR

113

CLAM User and development documentation

CLAM_BIG_ENDIAN
CLAM_LITTLE_ENDIAN

101 Platform dependant macros
CLAM code expects these macros to be defined by the compiler in order to identify the platform and
the compiler:

_MSC_VER
This macro is defined by Microsoft Compilers, and identifies the major and minor version of the

compiler being used.
__MWERKS__

This macro is defined by Metrowerks Codewarrior family of compilers
__GNUC__

This macro is defined by all recent versions of the GNU C/C++ Compiler
WIN32

This macro is defined by default by Microsoft Visual Studio IDE. If your IDE is not defining it
by default, and you are developing on Microsoft Windows you should hack your makefiles (or
similar) since it is vital for some CLAM cross-platform functionalities to work properly.
macintosh

When this macro is defined CLAM code assumes that the current platform is some MacOS
version.
POSIX

The generated binary is for a POSIX compatible operating system (i.e. headers such as
unistd.h are expected to be found).

102 Private Macros
Those macros are not intended for user use. They are documented here only for completeness.

CLAM_NUMERIC_ARRAY_INITIALIZATIONS(type)
CLAM_FAST_ARRAY_SPECIALIZATIONS(type)
CLAM_DB_SCALING
CLAM_ABORT(message)
__COMMON_DYNAMIC_TYPE(CLASS_NAME,N)
__COMMON_DYN_ATTRIBUTE(N,ACCESS,TYPE,NAME)

114

CLAM User and development documentation

CLAM SAMPLE APPLICATIONS

115

CLAM User and development documentation

XXII Introduction
CLAM Sample applications can be found in the /examples folder. This directory includes large
applications and smaller usage examples. In this section we will focus in the former.

The next sections explain the main functionality and structure of these applications. But as a first
overview here is a brief description of each one:

103 SMS Example
Functionality: This application performs a spectral analysis of an input sound following the SMS
model (http://www.iua.upf.es/~sms). The analysis can then be transformed and synthesized back.

Focus on this example if: (1) Your main interest in CLAM is related to Spectral Analysis or
Transformations; (2) You have previously used SMSTools or SMSCommandLine and you are looking
for a similar tool; (3) You would like to see an off-realtime signal processing application; (4) You are
wandering what XML is used for in CLAM; (5) You are interested in content-analysis or MPEG7.

104 SALTO
Functionality: This is a real-time sax and trumpet synthesizer based on a spectral model. It can take in
MIDI data (both from a keyboard and a wind controller) and XML Melody Data.

Focus on this example if: (1) You are interested in real-time synthesis applications; (2) Your main
interest is in spectral models for synthesis; (3) You want an example of MIDI usage in CLAM; (4)
You are into multithreading handling; (5) You play saxophone or trumpet and happen to have a
wind-controller; (6) You just want to use a MIDI-controlled synthesizer and play some music.

105 Spectral Delay
Functionality: Real-time audio effect that splits the input sound into three different bands and applies a
delay to each of them.

Focus on this example if: (1) You are into real-time processing; (2) You want to see an
easy-to-understand application of spectral processing; (3) You want to see an example with real-time
GUI interaction.

106 Rappid
Functionality: Real-time amplitude modulation between two input sounds.

Focus on this example: If you are interested in robust, real-time applications in Linux.

116

CLAM User and development documentation

http://www.iua.upf.es/~sms

XXIII SMS Example
(Found at /examples/SMS)

The MTG’s flagship applications have been the SMSCommandLine and SMSTools, developed 5
years ago but currently discontinued. As a matter of fact, one of the main goals when starting CLAM
was to develop the substitute for those applications.

The example you will find in this first release is a beta version and efforts are being put forward to
include a more ambitious tool soon.

The application analyzes, transforms and synthesizes back a given sound. For doing so, it uses the
Sinusoidal plus Residual model (usually referred to as SMS). Next picture depicts the analysis
algorithm:

window
generation

peak
detection

pitch
estimation

peak
continuation

input
sound

residual
spectrum

spectral sine
generator

magnitudes,
sine

frequencies
and phases

FFT

FFT

window
generation

If you need more information about the signal processing details involved in the process you may
have to navigate through the MTG recommended literature (at http://www.iua.upf.es/mtg) or visit the
SMS homepage at http://www.iua.upf.es/~sms.

107 Introduction
The application has three different versions: SMSTools - which has a FLTK graphical user interface-,
SMSConsole- which is a command-line based version-, and SMSBatch - which can be used for batch
processing a whole directory. All you have to do to compile one or the other is to compile the file
SMSTools.cxx (if you want GUI), SMS.cxx (if you want the Command Line versrion) or SMSBatch
(if you want to batch process). It is strongly recommended that you start with the graphical SMSTools
version and only use the others only if you have more specific requirements. The rest of this document
will suppose that you are using the graphical version and only mention some differences with the other
versions where strictly necessary.

The application has a number of possible different inputs:

1. A configuration xml file. This configuration file is used to configure both the analysis and
synthesis processes.

2. An analysis xml file. This file will be the result of a previously performed and stored analysis. The
xml parser (xerces) features include a rather slow parsing/storing of documents. On the other hand,

117

CLAM User and development documentation

http://www.iua.upf.es/mtg
http://www.iua.upf.es/~sms

xml is a text-based format and thus you can expect a 1 MB sound file become 10 MB of xml
analysis data. For all those reasons the storing/loading of analysis data, although fully working, is not
recommended unless you want to have a textual/readable representation of your analysis result, else
you will be better off using the SDIF format (see next paragraph).

OR
An analysis SDIF file. This file will be the result of a previously performed and stored

analysis. This format is as complete as the XML passivation, but it is dramatically more compact
(i.e. smaller files), since data is not stored in a "human readable" format . See XII for more details
about SDIF file format.

3. A Transformation score in xml format. This file includes a list of all transformations that might be
applied to the result of the analysis and the configuration for each of the transformations.

Note that all of them can be selected and generated on run-time from the user interface if you use
the SMSTools version.

From these inputs, the application is able to generate the following outputs:

1. Analysis data xml or sdif file.
2. Melody xml file.
3. Output sound: global sound, sinusoidal component, residual component

The following picture illustrates the main blocks of the application:

118

CLAM User and development documentation

108 Building the application
If you got a binary precompiled for your platform you may skip this section. Else, if you are building
the application from the CLAM source itself, here you will find the necessary information

The example requires the following external libraries: Xercesc 1.7.0, for the XML support, FLTK
1.1.4, for the graphical user interface, the fftw v.2.1.3 library, and either Mesa (3.4.2 or higher) library
or vendor specific OpenGL binaries, for the flashy graphics. You should have them installed and fully
working on your system before trying to build the application from the library sources.

For building the application:

On GNU Linuxes

First follow the instructions found in the manual sections "Deploying CLAM in your system" and
"CLAM Build System Documentation", to have both deployed the library and set up the build system.
Once this is accomplished, get into SMS Tools build folder, <CLAM SOURCE
DIR>/build/Examples/SMS/Tools, and issue the following command

$ make CONFIG=release

this will trigger SMS Tools building. If everything goes smooth, you will obtain the SMS Tools
application binary in the same folder you issued the make CONFIG=release command called
SMSTools.

On Microsoft Windows

at <clam sources dir>/build/Examples/SMS/Tools folder you will find a Microsoft Visual C++ 6.0
project file (.dsp) already configured for building the application.

119

CLAM User and development documentation

109 An SMSTools walkthrough
[i1] Once you have built the Application you may follow the steps below to both get a first

impression of the application capabilities and check that everything is right:

1. First you have to configure the workspace. For doing so you have two options: (1) Load an xml
configuration file (like the one located in <clam sources dir>/build/Examples/SMS) or (2) directly
edit the default configuration. Let’s consider this second option. Go to File->Configuration->Edit.
There are many fields you can edit and modify (see Section on Configuration File) but for the sake
of simplycity, let us just select an input sound file (.wav, .aiff or .raw) by clicking on the button
next to the InputSoundFile field. Your interface should look something like:

120

CLAM User and development documentation

(Click to enlarge)

2. If the sound file name you entered is correct, we are now in the position to continue and analyze
the sound. Click on SMSAnalysis->Analyze and wait for the progress bar to finish.

121

CLAM User and development documentation

(Click to enlarge)

3. Once the sound is analyzed, we are ready to look at the analysis results. In the View menu you will
see active all the available data: original sound, sinusoidal tracks, fundamental frequency, and
frame related data (sinusoidal spectrum and peaks and residual spectrum). When you select a
frame related view, you can browse through the different frames by clicking on any of the
non-frame views or by using the frame browser at the bottom of the interface. You can also listen
to the sound by clicking on the play button on the bottom-right of the wave display. Note that the
sliders on any view act like a zoom control when clicking on any of the extremes.

122

CLAM User and development documentation

(Click to enlarge)

4. Apart from displaying, the result of the analysis can be stored for later uses. It can be stored in xml
format or sdif format. Xml is a textual tagged format that can be convenient for debugging and
studying results of some analysis but it is very verbose and slow (you should expect an xml file 4
times the size of the original audio). On the other hand SDIF is a binary format that for most uses
will be much more convenient. For storing the result of the analysis, choose File->SMS
Analysis->Store Analysis File. The application will switch from SDIF format to XML depending
on the file extension you choose.

Note that the result of an analysis can be later loaded selecting File->SMS Analysis->Load
Analysis Data.

5. Before synthesizing, we can transform the sound. For doing so, just as it happened with the
configuration, we can load an xml transformation score or edit the default one. We will do the
latter. Choose File->SMSTransformation->Edit Score. You will see a list of available
transformations. Clicking on any of them will open a brief description of the transformation and its
usage:

123

CLAM User and development documentation

(Click to enlarge)

Select any transformation, click on Add Transformation to Score and edit the Parameters on
the right. In the break point function editor, duble click to add a point and click to select a point
or draw a selection box. Repeat this step for any number of transformations you want to connect
one after the other.

124

CLAM User and development documentation

(Click to enlarge)

Click on Apply Changes to Score. Now we can transform the sound by selecting
SMSTransformation->Apply.

5. We can now synthesize the resulting sound. Select SMSSynthesis->Synthesize. Now visit the
View menu again and select the output component you want to display and listen to: Output
Sound, Output Sinusoidal and Output Residual.

125

CLAM User and development documentation

(Click to enlarge)

6. Finally you can store the results of the synthesis by choosing File->SMS Synthesis->Save...

110 Analysis Output
So, the output of the analysis is a CLAM::Segment that contains an ordered list of CLAM::Frames.
Each of these frames has a bunch of attributes, but the most important are: a
CLAM::SpectralPeakArray that models the sinusoidal component (including information about
sinusoidal track), a residual spectrum and the result of the pitch estimation (or rather fundamental
detection).

[i2] The output of this analysis can be (1) stored in xml format, (2) stored in sdif binary format, (3)
transformed and (4) synthesized back.

The xml format is rather verbose so the process of storing the result of the analysis in xml can be
time-consuming and can result in a large file (you can expect an expansion factor of about 10:1
comparing it to the original sound file). On the other hand, it can be easily read and can be used for
debugging purposes. This is a partial example of what your xml file will look like:

<Analyzed_Segment>

<BeginTime>0</BeginTime>
<EndTime>0.766258</EndTime>
<prHoldsData>1</prHoldsData>
<FramesArray>

126

CLAM User and development documentation

<Frame>

<CenterTime>0.00290249</CenterTime>
<Duration>0.00580499</Duration>
<SpectralPeakArray>

<Scale>Log</Scale>
<nPeaks>2</nPeaks>
<nMaxPeaks>50</nMaxPeaks>
<MagBuffer>-30.733 -9.25596e+061</MagBuffer>
<FreqBuffer>343.559 714.887</FreqBuffer>
<PhaseBuffer>1.5182 -0.0999764</PhaseBuffer>
<BinPosBuffer>4.00429 8.33224</BinPosBuffer>
<BinWidthBuffer>5 6</BinWidthBuffer>
<IndexArray>0 1</IndexArray>
<IsIndexUpToDate>0</IsIndexUpToDate>

</SpectralPeakArray>
<Fundamental>

<nMaxCandidates>1</nMaxCandidates>
<nCandidates>1</nCandidates>
<CandidatesFreq>343.559</CandidatesFreq>
<CandidatesErr>-1</CandidatesErr>

</Fundamental>
<ResidualSpec>

<Scale>Linear</Scale>
<SpectralRange>22050</SpectralRange>
<prSize>257</prSize>
<MagBuffer>0.00729711 0.00896791 0.0119354 0.0189819 0.000319389 0.0183698 0.00916167
0.0161299 0.0269896 0.0244382 0.0129489 0.00634384 0.00610172 0.00875066 0.00763111
0.00742003 0.00559243 0.000849196 0.00317517 0.00519037 0.00528536 0.00224068
0.00154297 0.00469072 0.00733866 0.00677861 0.00294284 0.000809419 0.00223092
0.00265733 0.00162793 0.000550603 0.000858541 0.00125168 0.00068071 0.000105767
0.00117828 0.00236095 0.00198881 0.00090993 0.000564566 0.00125519 0.00127909
0.00127066 0.00120286 0.00124451 0.00119085 0.000941523 0.000348921 0.000462266
0.000758022 0.000818371 0.000709333 0.000946096 0.000769061 0.000493843 0.0004842
0.000491863 0.000382826 0.000379278 0.000367886 0.000472623 0.000445563 0.000435359
0.000409167 0.000435712 0.000289131 0.000230931 0.00029841 0.000469285 0.000420821
0.000506603 0.000552621 0.000943916 0.000950009 0.000439976 0.000162634 0.000268673
6.66906e-005 0.000417807 0.000419127 0.000346079 0.000245963 0.000310977 0.000329851
0.000336672 0.000337432 0.000148063 0.000154738 0.000438211 0.000522947 0.000425414
0.000180047 0.000117523 0.000177102 0.000208794 0.000144707 7.62237e-005 9.28201e-005
0.000287346 0.000310371 0.000266661 0.000149645 0.00021754 0.00030985 0.000314559
0.000192857 3.32129e-005 0.000167097 0.000250963 0.000203181 0.000134031 0.000102491
0.000243036 0.000254449 0.000275495 0.000234674 0.000215736 0.000161505 0.000161531
0.000172264 0.00023892 0.000160434 0.000127822 0.000190916 0.000242277 0.000186513
0.000215995 0.000218083 0.000244236 0.000200369 0.000238023 0.000236179 0.000275808
0.000191796 0.000101178 9.95931e-005 0.00016034 0.000175327 0.00027087 0.000222175
0.000191879 0.000384598 0.000499003 0.000365438 0.000181958 0.000113119 0.000311989
0.000328654 0.000263493 0.000163289 0.000115733 4.07026e-005 0.000189727 0.000172219
0.00011008 0.000147785 0.000168118 0.000111638 0.000161761 0.000193647 0.000201768
0.000156759 0.000175221 0.00012852 0.000159159 0.000136581 0.000142458 0.000104311
0.000137866 0.000153131 0.000194957 0.000151109 0.000133012 0.000112813 0.000154199
0.000165131 0.00019192 0.000141609 0.000130629 0.00013765 0.000185932 0.00016096
0.000129 0.000100294 0.000173186 0.000153843 0.000152076 0.000109613 0.000140937
0.000133521 0.000153002 0.000131424 0.000147679 0.000123386 0.000139856 0.000116689
0.000141218 0.000121856 0.00014494 0.000127773 0.000145369 0.000121058 0.000142542
0.000129803 0.000148939 0.000122527 0.00013909 0.000116454 0.000140474 0.000120404

127

CLAM User and development documentation

0.000129426 0.000107437 0.000138172 0.000119912 0.000137334 0.000111384 0.000126984
0.000110148 0.000136653 0.000119516 0.00013837 0.000118661 0.000135258 0.000111201 0.000129452 0.000109565
0.000124679 0.000108109 0.000133821 0.000113002 0.000129722 0.000110658 0.000133673 0.000114235 0.000132992
0.000111121 0.000130611 0.000112623 0.000130159 0.000108879 0.00012951 0.000112183 0.000130109 0.00010963
0.000128652 0.000106292 0.00012649 0.000109276 0.000129228 0.000108783 0.000128619 0.000111234 0.000132835

0.000113863 0.000131056 0.000109608</MagBuffer>
<PhaseBuffer>3.14159 3.08208 -2.84775 -2.84702 0.222501 -0.357415 -0.192005 0.857515
0.164266 -0.717075 -1.34692 -1.25306 -0.80304 -1.03352 -1.4255 -1.67493 -2.42337 2.28937 -0.463914 -1.0696 -1.81997
-2.63472 -0.265465 -0.803979 -1.55456 -2.49373 2.90535 -2.02756 -2.19864 -2.99324 2.16832 1.08515 0.158611
-1.07551 -1.91136 -1.9366 0.120491 -0.980804 -2.03769 -3.00178 1.04362 -0.356165 -0.979226 -1.18441 -1.39887
-1.52026 -1.83433 -2.18476 -2.52041 -0.899889 -1.20572 -1.48061 -1.48561 -1.60454 -2.08082 -1.92976 -1.82558
-1.80127 -1.87773 -1.57999 -1.50824 -1.43029 -1.62481 -1.58055 -1.61722 -1.70472 -1.89816 -1.36964 -0.93364
-1.11818 -1.2283 -1.20535 -1.13643 -1.42734 -2.23122 -2.95545 -1.89245 -2.28797 0.792653 -0.796647 -1.49208
-1.64987 -1.6976 -1.35185 -1.64026 -1.63719 -2.06527 -2.53459 -0.410569 -1.05411 -1.79081 -2.55591 2.60431
-0.288706 -1.10392 -1.49526 -1.97181 -2.15656 0.612444 -0.468561 -1.25125 -1.95891 2.80796 0.563956 -0.425114
-1.15636 -1.96053 2.55262 0.369696 -0.400003 -0.842419 -1.04522 0.108873 -0.174641 -0.470307 -0.682711 -0.872543
-0.952344 -0.925881 -0.755265 -0.494537 -0.745278 -1.03808 -0.533305 -0.283193 -0.606887 -0.655821 -0.569462
-0.580754 -0.722371 -0.719113 -0.685507 -0.751142 -0.97438 -1.3813 -1.14374 -0.315467 -0.331636 -0.143219
-0.349771 -0.678538 -0.204147 -0.216003 -0.837882 -1.42846 -1.64832 -0.382795 -0.614104 -1.17802 -1.55154 -1.80173
-1.9215 1.68532 -0.0644832 -0.821967 -0.637113 -0.409722 -0.694729 -0.596954 -0.316125 -0.470586 -0.732607
-0.744035 -0.781622 -0.776868 -0.647869 -0.750809 -0.719915 -0.622058 -0.367594 -0.35117 -0.553486 -0.79245
-0.674985 -0.452145 -0.342092 -0.397661 -0.599614 -0.773513 -0.555672 -0.3547 -0.493991 -0.741259 -0.803371
-0.285476 -0.357441 -0.587013 -0.65025 -0.577342 -0.39602 -0.443145 -0.473738 -0.505712 -0.503574 -0.511424
-0.479682 -0.442623 -0.40107 -0.404894 -0.38004 -0.408274 -0.418635 -0.415458 -0.360539 -0.375894 -0.421767
-0.44643 -0.414257 -0.397415 -0.363917 -0.427264 -0.405524 -0.307071 -0.282502 -0.335477 -0.343677 -0.364971
-0.292669 -0.240198 -0.227494 -0.262238 -0.266188 -0.290855 -0.294307 -0.299723 -0.254931 -0.263727 -0.224682
-0.161851 -0.174198 -0.203569 -0.185546 -0.155451 -0.151441 -0.168252 -0.167166 -0.170164 -0.139481 -0.147306
-0.145664 -0.130857 -0.102859 -0.108977 -0.113821 -0.103976 -0.100063 -0.0870527 -0.0498648 -0.0388209 -0.0417596

-0.0324963 -0.0127574 0.00388132 -0.0023968 -0.016122 -0.0216873 0</PhaseBuffer>

</ResidualSpec>

</Frame> ...

If you prefer to have a more compact representation of your analysis you should choose the SDIF
format. SDIF (Sound Description Interchange Format) is a non-propietary format used for exchanging
analysis data especially between research teams.

111 Configuration
In order to make the application work, you first need to load a configuration xml file or edit the default
one through the graphical interface. This configuration includes all the different parameters for the
analysis/synthesis process. If you load an xml file that includes non-valid parameter values (like a path
to a non-existing input sound file), the analysis process will remain disabled. (Note: if you try to load
an xml file that does not comply to the Configuration schema, the result is unpredictable and may even
produce a program crash).

Here is an example of a valid xml configuration:
<SMSAnalysisSynthesisConfig>

<Name />
<InputSoundFile>c:/1_brief.wav</InputSoundFile>
<OutputSoundFile>c:/1_out.wav</OutputSoundFile>
<OutputAnalysisFile>c:/analysis.sdif</OutputAnalysisFile>
<InputAnalysisFile>c:/analysis.xml</InputAnalysisFile>
<AnalysisWindowSize>513</AnalysisWindowSize>
<AnalysisHopSize>256</AnalysisHopSize>
<AnalysisWindowType>Hamming</AnalysisWindowType>
<ResAnalysisWindowSize>513</ResAnalysisWindowSize>
<ResAnalysisWindowType>BlackmanHarris92</ResAnalysisWindowType>
<AnalysisZeroPaddingFactor>0</AnalysisZeroPaddingFactor>
<AnalysisPeakDetectMagThreshold>-120</AnalysisPeakDetectMagThreshold>
<AnalysisPeakDetectMaxFreq>-120</AnalysisPeakDetectMaxFreq>

128

CLAM User and development documentation

<AnalysisSinTrackingFreqDeviation>20</AnalysisSinTrackingFreqDeviation>
<AnalysisReferenceFundFreq>1000</AnalysisReferenceFundFreq>
<AnalysisLowestFundFreq>40</AnalysisLowestFundFreq>
<AnalysisHighestFundFreq>6000</AnalysisHighestFundFreq>
<AnalysisMaxFundCandidates>50</AnalysisMaxFundCandidates>
<AnalysisHarmonic>0</AnalysisHarmonic>
<DoCleanTracks>0</DoCleanTracks>
<SynthesisFrameSize>256</SynthesisFrameSize>
<SynthesisWindowType>Triangular</SynthesisWindowType>
<SynthesisHopSize>-1</SynthesisHopSize>
<SynthesisZeroPaddingFactor>0</SynthesisZeroPaddingFactor>

</SMSAnalysisSynthesisConfig>

Let us comment the different parameters involved:
Global Parameters:
<Name>: Particular name you want to give to your configuration file. Not used for anything except

the xml parsing.
<InputSoundFile>: path and name of the input sound file you want to analyze (depending if you

are running the application in GNU/Linux or Windows that will be a unix path or an msdos path).
<OutputSoundFile>: path and name of where you want to have your output synthesized sound file.

The application will add a "_sin.wav" termination to the Sinusoidal component and a "_res.wav"
termination the residual file name. In the graphical version of the program (SMSTools) though, this
parameter is not used as when the output sound is to be stored, a file browser dialog pops-up.

<OutputAnalysisFile>: path and name of where you want your output analysis data to be stored.
The extension of the file can be .xml or .sdif. The application will choose the correct format depending
on the extension you give.Not used in the GUI version as it is obtained from the dialog.

<InputAnalysisFile>: path and name of where you want your input analysis data to be loaded from.
Not used in the GUI version as it is obtained from the dialog.

(Note to users of previous versions: Sampling Rate is no longer used as it is automatically extracted
from the input sound file).

Analysis Parameters
<AnalysisWindowSize>: window size in number of samples for the analysis of the sinusoidal

component. (Note: if the value entered is not odd, the program will internally add +1 to it)
<ResAnalysisWindowSize>: window size in number of samples for the analysis of the residual

component. (Note: if the value entered is not odd, the program will internally add +1 to it)
<AnalysisWindowType>: type of window used for the sinusoidal analysis. Available: Hamming,

Triangular, BlackmannHarris62, BlackmannHarris70, BlackmannHarris74, BlackmannHarris92,
KaisserBessel17, KaisserBessel18, KaisserBessel19, KaisserBessel20, KaisserBessel25,
KaisserBessel30, KaisserBessel35.

<ResAnalysisWindowType>: type of window used for the residual analysis. Available: Same as in
sinusoidal. Recommended: as sinusoidal spectrum is synthesized using the transform of the
BlackmannHarris 92dB, it is necessary to use that window in the analysis of the residual component in
order to get good results.

<AnalysisHopSize>: hop size in number of samples. It is the same both for the sinusoidal and
residual component. If this parameter is set to -1 (which means default), it is taken as half the residual
window size. Recommended values range from half to a quarter of the residual window size.

<AnalysisZeroPaddingFactor> Zero padding factor applied to both components. 0 means that
zeros will be added to the input audio frame till it reaches the next power of two, 1 means that zeros
will be added to the next power of two etc...

<AnalysisPeakDetectMagThreshold>: magnitude threshold in dB’s in order to say that a given
peak is valid or not. Recommended: depending on the window type and the main-to-secondary lobe
relation and the characteristics of the input sound, a good value for this parameter may range between
-80 to -150 dB.

129

CLAM User and development documentation

<AnalysisPeakDetectMaxFreq>: Frequency of the highest sinusoid to be tracked. This parameter
can be adjusted, for example, if you are anlyzing a sound that you know only has harmonics up to a
certain frequency. Recommended: It depends on the input sound but, in general, a sensible value is
8000 to 10000 Hz.

<AnalysisSinTrackingFreqDeviation>: maximum deviation in hertz for a sinusoidal track.
<AnalyisReferenceFundFreq>: in hertz, reference fundamental.
<AnalyisLowestFundFreq>: in hertz, lowest fundamental frequency to be acknowledged.
<AnalyisHighestFundFreq>: in hertz, highest fundamental frequency to be acknowledged.
<AnalyisMaxFundFreqError> : maximum error in hertz for the fundamental detection algorithm.
<AnalyisMaxFundCandidates>: maximum number of candidate frequencies for the fundamental

detection algorithm.
<AnalysisHarmonic>: if 1, harmonic analysis is performed on all segments that have a valid pitch.

In those segments the track number assigned to each peak corresponds to the harmonic number. On
unvoiced segments, inharmonic analysis is still performed. Set to 1 if the type of transformation you
want to perform depends on this harmonic characteristic. It is highly recommended that if you use
harmonic analysis you set a low threshold for AnalysisPeakDetectMagThreshold> (i.e. -120). This
means that many peaks (more than necessary) will be detected in the peak detection process but will
then be removed in the harmonic tracking process.

Synthesis Parameters
<SynthesisFrameSize>: in number of samples, size of the synthesis frame. If set to -1, it is

computed as (ResAnalysisWindowSize-1)/2. If any other number is used you are bound to get
synthesis artefacts.

<SynthesisWindowType>: type of window used for the residual analysis. Available: Same as in
sinusoidal.

Morph Parameters
<MorphSoundFile>: Optional name of the second file to do a morph on. Only necessary if you

want to do a morphing transformation afterwards. Note that the file to morph will be analyzed with the
same parameters as the input sound file and that it must have the same sampling rate.

112 Synthesis
Apart from storing the result of your analysis, you can do more interesting things. The first thing you
may like to do is synthesize it back, separating each component: residual, sinusoidal, and the sum of
both. The following picture illustrates the SMS synthesis algorithm:

130

CLAM User and development documentation

residual
spectral
data

magnitude
spectrum

phase
spectrum

polar to
rectangular
conversion

complex
spectrum

IFFT

window
generation

output
sound

magnitude
spectrum

phase
spectrum

polar to
rectangular
conversion

spectral
residual

generation

sine
magnitudes

sine
phases synthesis

window

spectral

generation
sine

sine
frequencies

For invoking the synthesis procedure you just have to call the ’synthesize’ option (either from the
GUI or the menu) and then look or store each of the components.

113 Transformation
To transform your sound you first have to load an xml transformation score or use the graphical
transformation editor available in SMSTools. It is strongly recommended that you use the graphical
interface in order to generate the transformation chain you want to apply to your sound. Click on
File->Transformation Score->Edit Score. A new dialog like the one depicted in the next figure will
pop-up.

131

CLAM User and development documentation

On the left you have a list of available SMS transformations. By clicking on any of them you will
get a brief description on the right panel. This description is just intended to give you a very concise
explanation on how the transformation works. If you should need a more detailed explanation the
recommended source is the book DAFX - Digital Audio Effects, edited by Udo Zoelzer and published
by Wiley and Sons Ltd. Once you have decided what transformation you want to use you have click
on the "Add to Score" button. The transformation will be added to the central panel, where the list of
used transformations is located. Now you are ready to set the parameters for the transformations.
Select the "Parameters" tab on the right-hand panel.

Once you have edited a transformation, you can repeat the previous steps to add a new
transformations. You may add as many transformations as you need (even more than one instance of
the same transformation). Note though that the way the transformations are sorted affects the output
(i.e. it is not the same to apply a pitch shift and then a spectral shape shift than doing it the other way
around).

132

CLAM User and development documentation

Although some transformations have simpler controls, most of them are configured using a
break-point-function (or envelope-like) control like the one shown in the previous picture. Note that
this break point funtion may represent an evolution over time or an spectral envelope, depending on
the type of transformation. On the bpf grid, click to select and move and double click to add a point.
You can select a point or a set of points by drawing a selection box. Then you can delete them pressing
Ctrl X, you can move them with the mouse or the cursor keys, you can mirror them with the ’*’ key or
increase or decrease the difference to the mean value with ’+’ and ’-’ keys.

But if you don’t want to use the graphical editor or you are using the non-gui version you will need
to understand how the xml score works.This configuration file is basically a composition of concrete
configurations that affect specific transformations. You may change the order, activate/deactivate or
configure any of them.The way the configuration affects a concrete transformation may vary, you
should read the comments before each transformation for learning the particularities of every
transformation.All transformations share some common fields. First they need to define the kind of
concrete transformation in the ConcreteClassName attribute. Then you need to specify the values for
the transformation. This can usually be done in two different ways: using a single-value Amount
attribute or a breakpoint function BPFAmount attribute in which you declare a function as a set of
points and an interpolation type (note: this function may represent a time envelope or a spectral
envelope depending on the transformation).
In any transformation chain there need to be two special transformations called
SMSTransformationChainIO as first and last transformation to the chain. These transformations act as
input and output, are mandatory but do not affect the result.After the list of transformations there is an
’OnArray’ where you have the same number of 1’s or 0’s as transformations in the Chain. 1 means
active and 0 means bypassed (SMSTransformationChainIO’s are not affected by this).

Here is a complete commented example of how a transformation score looks like:
<SMSTransformationChainConfig>

<Configurations>

<!-- Input to the transformation chain. Must always be present. -->
<Config>
<ConcreteClassName>SMSTransformationChainIO</ConcreteClassName>
</Config>

133

CLAM User and development documentation

<!-- Pitch shift with timbre preservation. You can define a single-value amount or a time envelope. 1 means
no change and 0.5 means multiplying current pitch by 0.5-->
<Config>
<ConcreteClassName>SMSPitchShift</ConcreteClassName>
<BPFAmount>
<Interpolation>Linear</Interpolation>
<Points>{0 1.5} {1 1.5}</Points>
</BPFAmount>

</Config>
<!-- Gender change. If amount is 0 it means from male to female. If it is 1 it means from female to male. -->
<Config>
<ConcreteClassName>SMSGenderChange</ConcreteClassName>
<Amount>0</Amount>
</Config>

<!-- Pitch discretization to temparate scale. If active it rounds the pitch to nearest note according to
temperate musical scale.-->
<Config>
<ConcreteClassName>SMSPitchDiscretization</ConcreteClassName>
</Config>

<!-- Gain applied to odd harmonics in relation to even harmonic. E.g. A value of 6 means that a 6dB
difference will be introduced, thus, odd harmonics will be 3dB higher and even harmonic 3dB lower.-->
<Config>
<ConcreteClassName>SMSOddEvenHarmonicRatio</ConcreteClassName>
<Amount>12</Amount>
</Config>

<!-- Frequency shift applied to all partials expressed in Hz-->
<Config>
<ConcreteClassName>SMSFreqShift</ConcreteClassName>
<Amount>100</Amount>
</Config>

<!-- Filter expressed in bpf format applied to only the sinusoidal components-->
<Config>
<ConcreteClassName>SMSSineFilter</ConcreteClassName>
<BPFAmount>
<Interpolation>Step</Interpolation>
<Points>{0 6} {1 0} {2 0} {100 0} </Points>
</BPFAmount>
</Config>

<!-- Gain in dB’s applied to the residual component-->
<Config>
<ConcreteClassName>SMSResidualGain</ConcreteClassName>
<Amount>6</Amount>
</Config>

<!-- Gain in dB’s applied to the sinusoidal component-->
<Config>
<ConcreteClassName>SMSSinusoidalGain</ConcreteClassName>
<Amount>3</Amount>
</Config>

<!-- Harmonizer. Each point defines a new voice added to the harmonization. The X value is the gain in
relation to the original one and the Y value the pitch transposition factor. -->
<Config>
<ConcreteClassName>SMSHarmonizer</ConcreteClassName>
<BPFAmount>
<Interpolation>Step</Interpolation>
<Points>{-3 1.3} {-3 1.5} {-3 1.7}</Points>
</BPFAmount>
</Config>

<!-- Frequency shift applied to the sinusoidal spectral shape expressed in Hz.-->
<Config>
<ConcreteClassName>SMSSpectralShapeShift</ConcreteClassName>
<Amount>50</Amount>

134

CLAM User and development documentation

</Config>
<!-- Morphing between two different sounds. SMSMorph has many different parameters to configure some

of which are not even implemented. But the basic ones (and already tested) are:
<HypBPB>: BPF (envelope-like) Parameter. Defines how much of each sound is being used from 0 to 1
<SynchronizeTime>: BPF (envelope-like) Parameter. Defines temporal relation between input sound and
sound to hybridize
<HybPitch: BPF (envelope-like) Parameter. Pitch to use: 0 input, 1 sound to hybridize-->
<Config>
<ConcreteClassName>SMSMorph</ConcreteClassName>
<HybBPF>
<Interpolation>Linear</Interpolation>
<Points>{0 0} {1 1}</Points>
</HybBPF>
</Config>
<!-- Output to the transformation chain. Must always be present. -->
<Config>
<ConcreteClassName>SMSTransformationChainIO</ConcreteClassName>
</Config>

</Configurations>
<!-- Array defining what transformations are active(1) or bypassed(0). WARNING: This array always has to be the
same size as the number of previous transformations available.-->
<OnArray>1 0 0 0 0 0 0 0 0 0 0 1 1</OnArray>

</SMSTransformationChainConfig>

114 Implementing your own transformation
If you want to implement a particular transformation (other from the very simple frequency shift
included as a sample) you will have to get into a little coding (don’t panic, it is very simple!).

These are the steps you have to follow:

1. Look at any of the basic already implemented transformations located at
clam/src/Processing/Transformations/SMS (SMSFreqShift will do fine as a first step, do not
wander into time SMSTimeStretch and SMSMorph as they are much more complicated. Yeah, I
bet now that is the first thing you are planning on doing).

2. Write your own MyTransformation.hxx and MyTransformation.cxx files following the same
structure. In the header, note that your class MyTransformation must derive from a template class
named SMSTransformationTmpl. As the template argument, you must use the part of the analyzed
frame you want to transform: SpectralPeakArray if you want to transform the sinusoidal
component, Spectrum if you want to transform the residual component or Frame if you want to
transform both. Then you need to declare the following methods: GetClassName that must return
your classes name, a default constructor, a constructor that takes in an SMSTransformationConfig
as argument, and a Do(T,T) method where T is the concrete type on which the transformation is
applied (SpectralPeakArray, Spectrum or Frame). Here is how the header of
MyTransformation.hxx would look like if we decided we wanted to transform only the residual
component:

 class MyTransformation: public SMSTransformationTmpl<SpectralPeakArray>
 {
 const char *GetClassName() const {return "MyTransformation";}
 public:
 MyTransformation(){}
 MyTransformation(const SMSTransformationConfig &c):SMSTransformationTmpl<SpectralPeakArray>(c){}
 bool Do(const SpectralPeakArray& in, SpectralPeakArray& out);
 };

135

CLAM User and development documentation

3. Now go to MyTransformation.cxx file and implement the code for your transformation.
So, if MyTransformation only gets every spectral peak and multiplies its frequency by two, I

should only have to write the following code:

bool MyTransformation::Do(const SpectralPeakArray& in, SpectralPeakArray& out)
{
 TSize nPeaks=in.GetnPeaks()
 DataArray& inBuffer=in.GetFreqBuffer();
 DataArray& outBuffer=out.GetFreqBuffer();
 for(int i=0;i<nPeaks;i++)
 outBuffer[i]=inBuffer[i]*2;
 return true;
}

Note that the only difference with the code you will find in the SMSFreqShift.cxx file is that
here we are using a constant multiplying factor while there it takes the value out of a control by
doing mAmountCtrl.GetLastValue(). This CLAM control returns holds the current value from the
transformation and it is updated automatically from the SMS application

4. After adding the necessary includes in your files, you are ready to compile your new SMS
transformation. It is now ready to use. But, in order to make it automatically available from the
SMS application a few more things need to be done to integrate your transformation into what we
call the SMSTransformationChain. The steps that follow are in some cases a bit of a hack and we
are working on simplifying them in a next release:

First we must register the MyTransformation class in the Processing Factory (implementation
of the Factory Method pattern for those of you who are into software engineering). For doing
so, you must go to the MyTransformation.cxx file and add the following lines:

 typedef CLAM::Factory<CLAM::Processing> ProcessingFactory;
 static ProcessingFactory::Registrator<CLAM::SMSFreqShift> regtMyTransformation("MyTransformation");

Then you need to make the ProcessingChain class that a new transformation has been added
and the type of configuration it uses. Open ProcessingChain.cxx file, search for the
InstantiateConcreteConfig method and you will see a long and ugly "if" that includes most
transformations. Help us make it uglier by adding your transformation over there:

if(type=="SMSDummyTransformation"||type=="SMSFreqShift"||type=="SMSPitchShift"||
 type=="SMSOddEvenHarmonicRatio"||type=="SMSSineFilter"||type=="SMSResidualGain"||
 type=="SMSHarmonizer"||type=="SMSSinusoidalGain"||type=="SMSPitchDiscretization"||
 type=="SMSSpectralShapeShift"||type=="SMSGenderChange"||type=="SMSTransformationChainIO"

 ||type=="MyTransformation")

5. Finally, you may want to add a widget to the graphical interface in order to configure your
transformation. We recommend you to just follow the example of a pre-existing configurator in
/examples/sms/tools/gui. The SMSFreqShiftConfigurator, for instance, will do fine for a simple
configuration.

You are now ready to build the program again and used your configuration from the SMS
application. If you are the of curious kind you have surely already wandered into the SMSMorph and
SMSTimeStretch transformations. These transformations are much more complex because the (1) use
a different configuration instead of the default SMSTransformationConfig, (2) override some of the
behaviour of the base SMSTransformation class because they have a more complex logic
(SMSTimeStretch, for example processes at a non-constant rate), (3) They are based on other existing
Processings. We will leave the exercise of implementing such transformation to the advanced reader
(remember you may always get support through the CLAM mailing list clam@iua.upf.es).

136

CLAM User and development documentation

115 Internal class structure and program organisation
You should only read this section if you are particularly interested in learning ’what’s inside’ the
example or you want to use its structure as a base for another application. Otherwise, if you are using
the SMS as an aplication on its own and could not care less about programming details you better skip
this part (for your own sake!).

The rest of this section will deal with the main structural aspects with the application. All these
aspects are summarized in the following UML diagram:

137

CLAM User and development documentation

The main class of our application is the SMSBase class. This is an abstract class (thus cannot be
instantiated), but contains the core of the process flow. The two derived classes, SMSTools and
SMSStdio are the GUI and Standard I/O versions of the base class.

So let us briefly mention what this base class holds inside. All the methods illustrated in the diagram
(LoadConfig, Analyze,...) correspond to functionalities of the program that, in the case of the GUI
version, are mapped directly to menu options. Of course the class has other methods but are used for
internal convenience but are less important.

The boolean (mHaveConfig, mHaveInputAudio,....) attributes of the class hold important values to
control the flow of the program because they inform of whether a previous action has taken place and
the desired operation can then be invoked.

The class has two Processing Composite attributes, instances of the SMSAnalysis and
SMSSynthesis classes. These Processing Composites are configured when the global configuration is
loaded and then run from the Analyze and Synthesize methods. Some intermediate Processing data (a
Segment, a Melody and different Audio objects) are used to hold the input/output data generated
during the process. These data is then stored/played using the corresponding method (i.e.
StoreAnalysis or PlayOutputSound).

You will see that, although this class concentrates most of the functionality of the application and
has a great deal of operations, these methods are fairly simple and rarely need more than 10/20 lines of
code (as a matter of fact, the longest operation is the Melody analysis, which should not be included in
this class but rather in a separate Processing class). Much as the complex logic of some method
delegation (as the one existing in the methods Analyze, DoAnalysis, AnalysisProcessing...) is
introduced by the needs of the graphical interface, where callbacks need to be assign to GUI
commands and methods need to be called on separate threads. But, as an example, let us take a look at
the AnalysisProcessing method that implements the actual process for the analysis:

1. void SMSBase::AnalysisProcessing() {2. Flush(mOriginalSegment);3. int k=0;4. int step=mAnalConfig.GetHopSize();5. GetAnalysis().Start();
6. while(GetAnalysis().Do(mOriginalSegment)) {
7. k=step*(mOriginalSegment.mCurrentFrameIndex+1);
8. mCurrentProgressIndicator->Update(float(k)); }
9. GetAnalysis().Stop(); }

In line 1 we call the Flush method, which initializes the member Segment and deletes previously
existing data. In the next two lines we declare and initialize the variables that will be used in the
analysis loop: k is the counter for updating the ProgressIndicator and step is the analysis hop size. In

138

CLAM User and development documentation

line 5 we Start our SMSAnalysis Processin. In line 6 the loop begins. Note that the output condition is
the return value of the call to the Do in the SMSAnalysis. In lines 7-8 we update the progress indicator
and finally, in line 9, we Stop the SMSAnalysis Processing.

Note that, if we remove the support for the Progress Indicator the resulting method would only be 5
lines long:

1. void SMSBase::AnalysisProcessing() {
 2. Flush(mOriginalSegment);
 3. GetAnalysis().Start();
 4. while(GetAnalysis().Do(mOriginalSegment)) {}
 5. GetAnalysis().Stop(); }

If you follow a similar approach you can fairly easily understand all the members of out main
application class.

116 SMSSynthesis and SMSAnalysis
We have seen how simple the processing part of our application is: basically a call to the Do method
of either SMSAnalysis or SMSSynthesis classes. That is only possible because these Processing
Composites hide all the processing complexity.

If we take a look again to the UML diagram we see that these classes contain inside a great deal of
other Processing classes. Let us enumerate them and their basic functionality.

Inside the SMSAnalysis we have:
SpectralAnalysis: Performs an STFT of the sound. For doing so, it holds a number of Processing

objects inside, namely a WindowGenerator, an AudioMultiplier, a CircularShift (for zero-phase buffer
centering) and an FFT. Note that the SMSAnalysis has two instances of this class: one for the
sinusoidal component and another one for the residual. This Processing Composite is quite complex in
itself but we won’t go into details.

SpectralPeakDetect: Implements an algorithm for choosing the spectral peaks out of the previously
computed spectrum.

FundFreqDetect: Processing for computing the fundamental frequency.
SinTracking: This Processing performs sinusoidal tracking or peak continuation from one frame to

the next one. It implements an inharmonic and harmonic version of the algorithm.
SynthSineSpectrum: Once we have analyzed the sinusoidal component and we have the continued

peaks we have to synthesize it back to spectrum in order to compute the residual component. This is
the Processing in charge of this synthesis of the sinusoidal component.

SpectrumSubstracter2: Once we have the sinusoidal synthesized spectrum and the original one
(coming out from the residual Spectral Analysis), we can subtract them in order to obtain the residual
spectrum.

The SMSSynthesis Processing Composite contains:
PhaseManagement: This Processing is in charge of managing phase of spectral peaks, from one

frame to the next one.
SynthSineSpectrum: As already commented in the SMSAnalysis, this object is in charge of

creating a synthetic spectrum out of the array of spectral peaks.
SpectrumAdder2: Is used to add the spectrum of the residual and the synthesized spectrum.
SpectralSynthesis: This processing composite implements the inverse STFT. That is, is the object

in charge of computing an output audio frame from an input spectrum.The SMSSynthesis class has
three instances of this class: one for the global output sound, one for the residual and one for the
sinusoidal component. The SpectralSynthesis Processing Composite has the following processing
inside: an IFFT, two WindowGenerators (one for the inverse Analysis window and one for the
Synthesis Triangular window), an AudioProduct to actually perform the windowing, a CircularShit to
undo the CircularShift introduced in the Analyisis and an OverlapAdd object to finally apply this

139

CLAM User and development documentation

process to the output windowed audio frames. As you can see, it is fairly complex in itself and we
would need to go into too many signal processing details in order to explain it completely.

So, that is about all. If you feel you still need to know more about the application you can read the
above mentioned classes. If you think you’d rather learn more about signal processing details you can
browse through the MTG bibliography.

140

CLAM User and development documentation

XXIV SALTO
SALTO is an SMS synthesizer that is designed to synthesize high quality Sax and Trumpet sounds.
Here you can see a schematic representation of the application:

In order to make it work you need to download the SALTO database from the CLAM [i5] website
(www.iua.upf.es/mtg/clam). This database is a set of SDIF files that contain the result of previous
SMS analysis. To put it in short, these SDIF files contain spectral analysis samples for the steady part
of some notes, the residual and the attack part of the notes. If you want to look at these files you can
use the SDIF Display application included with CLAM. If you want to synthesize them one by one
and even add some transformations, you can use the Analysis/Synthesis Example application.

Apart from this SDIF input, SALTO has three other inputs: MIDI, an XML Melody, and the GUI.
Using MIDI as an input you can use SALTO as a regular MIDI synthesizer on real-time. SALTO is
prepared to accept incoming MIDI messages coming from a regular MIDI keyboard or a MIDI
breathcontroller.

If you use an XML melody as an input you will be able to synthesize it back. It is the easiest way to
try that SALTO is working correctly. You can use the melody included in the CLAM repository, write
your own one following the same structure or use the Analysis/Synthesis Example application to
generate one from an input sound.

Finally, the GUI is still under development and can be basically used to control the way the
synthesis is going to work.

141

CLAM User and development documentation

http://www.iua.upf.es/mtg/clam

As seen in the previous screenshot, the most important part of the interface is on the lower left: the
buttons to select what part of the sound you would like to synthesize. The upper part of the interface is
just a graphical display of the output. On the right there are two buttons for loading and playing an xml
melody. Finally, the central part is designed to manage the database but is not functional at this
moment.

142

CLAM User and development documentation

XXV Spectral Delay
SpectralDelay is also known as CLAM’s Dummy Test. In this application it is no important to actually
implement an impressive application but rather to show what can be accomplished using the CLAM
framework. Especial care has been taken on the way things are done and why they are done.

The SpectralDelay implements a delay in the spectral domain. What that basically means is that you
can divide your input audio signal in three bands and delay them separately, obtaining interesting or
weird effects. Here you can see a block diagram of the process.

As you can see, the basic of the processing is an STFT (Spectral Analysis) that performs the
analysis of the input signal and converts it to the spectral domain. This processing composite contains
a bunch of other processing (i.e. WindowGenerator or FFT, see AnalysisSynthesis UML diagram).
The signal is synthesized using a SpectralSynthesis Processing that implements the inverse process. It
is thus transformed, in between these two steps, in the spectral domain.

The output data of the SpectralAnalysis is read by three AudioMultiplier Processings that also take
as input the spectral transform function of a pre-defined filter. As a matter of fact we apply three
different filters: a low-pass, a band-pass and a high-pass. We then have the signal divided into three
different bands. Each of them is delayed with a different delay time. Finally, and before the synthesis,
these three bands are summed up again.

The graphical interface controls the frequency cut-offs and gains of the filters and the delay times of
the delays.

143

CLAM User and development documentation

XXVI Rappid
Rappid is a testing workbench for the CLAM framework in high demanding situations. The first
version of Rappid implements a quite simple time-domain amplitude modulation algorithm. Any other
CLAM based algorithm, though, can be used in its place. Next picture illustrate the basic diagrams of
the application.

The most interesting thing about Rappid is the way that multithreading issues are handled, using a
watchdog mechanism. The current implementation works only under GNU/Linux.

Rappid has been tested in a live-concert situation. Gabriel Brinic used Rappid as a essential part of
his composition for harp, viola and tape, presented at the Multiphonies 2002 cicle of concerts in Paris.

144

CLAM User and development documentation

XXVII Combining CLAM with LADSPA plugins

117 The LADSPA Toolkit and CLAM, a brief introduction
LADSPA (Linux Audio Developer’s Simple Plugin) is a sound API that aims at giving an easy
interface to program audio plugins for GNU/Linux. These plugins are designed to be used as shared
objects inside any host programs that knows its interface.

The API is written in C, although there are some wrappers to C++ (like the Computer Music
Toolkit by Richard Furse). In this way,it allows to use LADSPA plugins inside C or C++ host
applications.

Seeing its purpose, is logical to think about the possibility of using CLAM to develop LADSPA
plugins.

118 Using CLAM Processings as LADSPA plugins
The only code you need to implement in order to create a ladspa shared object using CLAM are these
lines:

#include "Oscillator.hxx"
#include "LADSPA_ProcessingBridge.hxx"

LADSPABridge* Instance(void)
{
 int id = 3000;
 return LADSPABridgeTmpl<CLAM::SimpleOscillator>::Create(id);
}

As you can see, we declare a function called Instance that returns a pointer to an object of the class
LADSPABridge. This class is, as its name says, a bridge between CLAM C++ Processing Objects and
LADSPA C Plugins Instances. You need to call the "Create" method of this class templatized by the
processing you want to use as LADSPA plugin. Next stage is dedicated to create the settings.cfg of the
project, in order to create a shared object. To do it, just put the next line in settings.cfg:

IS_LIBRARY = 1

The other lines of the config file are the same as any other CLAM project files. You can see some
examples of them in build/Examples/CLAM-LADSPA_Toolkit/ (the source is in examples/CLT/).

119 Using LADSPA Plugins as CLAM Processings
There is also the possibility of using LADSPA shared objects inside CLAM, as if they were normal
Processings. In order to acomplish this task, we provide the user with a CLAM Processing class called
LadspaLoader. This processing has a Filename type attribute in its configuration, where you can assign
which shared object you want to use. Another attribute is the index of the plugin ladspa you want to
load from this shared object. After setting the correct values to its config, the LadspaLoader will create
a correct interface for this plugin (with its ports and controls). This processing only works with a
supervised version of Do (without parameters and using ports), and will use the algorithm
encapsulated in the plugin to process its input.

145

CLAM User and development documentation

MIGRATION GUIDELINES
This section contains a summary of things to change in your code when upgrading CLAM. For a
detailed change log see the ChangeLog.txt file on the tarball. Please, if upgrading your code implies
more changes than the ones below, warn the CLAM team to update the document (or fix the bug).

120 From 0.6.1 to 0.7.0
Visualc++ 6 is no longer supported. Upgrade to VisualStudio 7.1. Note that VS 7.0 is neither
supported.
Processing classes

Processing classes that uses in/out ports must #include "InPort.hxx" and
"OutPort.hxx" instead of "InPortTmpl.hxx" and "OutPortTmpl.hxx"
Processing classes that had in/out audio ports attributes declared like this:
InPortTmpl<Audio> mIn; or OutPortTmpl<Audio> mOut; now must change to
AudioInPort in; or AudioOutPort out , and thereof must #include
"AudioInPort.hxx" or "AudioOutPort.hxx"
In the processing sub-classes constructor:
Till now, a processing sub-class constructor called the in/out port constructor with 3 parameters
like this: mInPort("name", this, 1) where the third argument was the port window
size. Now this third parameter has been removed. Just declare the it like this:
mInPort("name, this);

Ports linking interface
The ports method AttachData has been deprecated. Now ports can only be linked with ports
(always: in -> out) and not with data. A brief rationale about this is that ports are prepared to deal
with streams of tokens (any data type), so they do things like: mapping a window of the stream,
consuming from the stream and producing to the stream. On the other hand if the user wants to
make his data objects explicit, he can use the processings Do with parameters, thus reserving the
ports interface for managing the processing data automatically.
AudioFile class
Change in the public interface. Now is a lot clearer and higher level.

SetHeader() depracated (made private)
Now use OpenExisting(filename) for reading a file
Or CreateNew(filename, outputFileHeader) for writing a new file

Low-level descriptors
Because the review and reimplementation of most of the low level descriptors (AudioDescriptors,
SpectralDescriptors, SpectralPeakDescriptors, FrameDescriptors...) you should be very cautious if
you rely on the computed values being the same. Most changes are related to:

Conformance to the formula on the literature
Normalization to meaningfull/comparable units
Singularities solving

Those modifications are reflected on the doxygen documentation. Some other descriptors have
been renamed or removed:

SpectralDescriptors::Skewness has been renamed as MagnitudeSkewness ,
reserving the former name for the real MPEG7 one (to be implemented).
SpectralDescriptors::Kurtosis has been renamed as MagnitudeKurtosis
reserving the former name for the real MPEG7 one (to be implemented).
SpectralTilt and HarmonicTilt have been droped because the results were no reliable

146

CLAM User and development documentation

(very unstable, numerically).
Removed uncomputed AudioDescriptors: Attack , Sustain , Release and Decay .
Removed uncomputed SpectralDescriptors: StrongPeak , Irregularity , BandEnergy ,
HFC

CLAM big examples (SMSTools, NetworkEditor, SpectralDelay and Salto) now are apart from the
main repository
So in the strange case that your code does an #include of some header of the named examples it
will not compile. Fixing this is easy: download the "used" example and add entries into the include
dirs var of your settings.cfg file.

121 From 0.5.5 to 0.5.6
XML related changes

Update the xerces version up to 2.3 (2.4 is not supported at this time)
Component::StoreOn methods is now const. Every definition of this method in subclasses must
change. Be carefull not to forget any definition, since some classes like processings, have the
pure virtuality fullfilled on its base class and will not complaint if your definition is wrong.
XMLStorage::Dump and XMLStorage::Restore are static methods now. There is no need to
instantiate an XMLStorage object. Using them in a non-static way will work but your will be
instantiating two XMLStorages. See the updated documentation.
XMLStorage methods Store and Load receive references to XML adapters so every time you
see:

storage.Store(&adapter);
// or
storage.Load(&adapter);

...must be substituted by:

storage.Store(adapter);
// or
storage.Load(adapter);

The way of doing LADSPA has been simplified a LOT. Take a look to the updated documentation.
Processing and ProcessingConfig interface.

The mandatory ProcessingConfig attribute Name is not useful anymore, so you don’t need to
declare it. If your code use SetName/GetName from CLAM Processings, please remove it in
order to compile because they are not declared now.
The interface to access Ports/Controls of a Processing has been changed. You can get a
reference to the needed Port or Control by name with the methods
Get(In/Out)(Ports/Controls).Get(name), or by number with
Get(In/Out)(Ports/Controls).GetByNumber(id). Some examples: GetInControls().Get("first in
control"); GetOutPorts().GetByNumber(1);...

Controls linking interface. The free functions related to connecting controls have been suppresed,
because it was redundant interface. Each control have methods to do so, like AddLink and
RemoveLink.

147

CLAM User and development documentation

122 From 0.5.4 to 0.5.5
TODO: Explain needed changes for BasicOps and Stats

123 From 0.4.2 to 0.5.0
Remember that CLAM 0.5.0 now uses fltk 1.1.4RC1 or greater
You should port your projects based on modules files (GNU/UNIX) or .dsp (VisualC/Windows).
Its very easy, just read the build system chapter.
If you used roundInt , you should use Round now.
Snapshots are now called Plots, see Plots.hxx header.

148

CLAM User and development documentation

124 From 0.2 to 0.3

124.1 Dynamic Types
1. The new style of macros. It you need to migrate from the old macros style, follow these guidelines:

Change the macro names, this is:
REG_NUM_ATTR -> DYN_CLASS_TABLE
REG_NUM_ATTR_USING_INTERFACE
DYN_CLASS_TABLE_USING_INTERFACE
REGISTER -> DYN_ATTRIBUTE
REGISTER_PTR -> Not Present, warn us
Not present before -> DYN_CONTAINER_ATTRIBUTE

Add the access specifier for each dyn attribute as first parameter of the DYN_ATTRIBUTE macros.

Swap the parameter positions between attribute type and name
Place an access specifier after the macros that will assure that the following members will have the
proper access (public, private, protected)

2. UpdateData() is safe and efficient: it never throws exceptions and returns a bool telling whether
it has done any memory update. Also, is efficient, in the sense of not traversing the attributes
information but consulting a global modified flag.

3. AddXXX and RemoveXXX are also safe: this means that they don’t throw exceptions even. If
you add an already added attribute, just does nothing. Furthermore, if you remove an existing attribute
and later you add it again without having done an update data, it will just have a null effect: the
attribute will remain untouched.

Dynamic attributes declarations are Typedef safe: Now we can declare dynamic attributes with
customized alias types (i.e. typedef int TInt) and they will also be supported by the XML store and
load.

4. Support for pointers as dynamic attributes has been eliminated.

124.2 Processing Data
If you are already familiar with CLAM’s library (formerly MTG-Classes) this are the basic things you
should be aware of:

DynamicTypes interface has changed: names of initialization methods and register macros have
been updated (you can find more information on this topic in previous section, section 49 section
50 for PD usage of DT and in all sections about Dynamic Types).

The use of configurations in PD classes is not mandatory and not even recommended (please read
through section 52). Only Spectrum preserves its configuration.

124.3 Error handling
Until the publication of this document other error reporting mechanisms have been used, not in a very
systematic way. There is a list of deprecated practices and their alternatives.

149

CLAM User and development documentation

124.4 PARANOID macro
The use of PARANOID macro is deprecated. You must use the above mechanisms instead mainly
assertions and checks.

124.5 Using exceptions as error message generators
Before this document was published the code was full of exceptions used to give the developer an
error messages like in:

if (someWeirdCondition)
 throw MyException("This error has happend");

This may be correct if the error is published and clients are able to catch the exception and handling
it. But in most cases this is only a way of reporting the developer that an implementation error has
ocurred. Then asserts are more practical and useful because they keep the stack on the correct place on
debug mode and throws an exception (or does nothing) on release.

CLAM_ASSERT(!someWeirdCondition,"This error has happend");

If it is enbraced in a #ifdef PARANOID or some other compiler mode dependant structure it is
very sure to be the wrong way of doing. Use asserts and check statements.

As a general rule when code Exceptions objects are used to report an error message, and the
exception can not be handled by the client code, they must be changed onto assertions.

124.6 Using _DEBUG, NDEBUG and so
Because the use of those macros is not standard along the differents C++ implementations, its use is
centralized on the Assert files. If assertions and exceptions does not fullfill your needs consider the
proposal of creating a new structure.

124.7 Miscellaneous
The name of the namespace has been changed to CLAM. Compile flags have also been changed so
you should check your private workspaces or makefiles (more information about flags in chapter
XXI).

The classes called ’ProcessingObject’ in previous releases have been renamed to ’Processing’ in this
release (the reason is a bit philosophycal so we won’t go into details here).

Apart from this, a number of other ’details’ may have changed form previous releases so you are
encouraged to take a look at the main document, specially those parts that mostly relate to your work
with CLAM. Anyhow, this is the first time we are able to offer you so complete documentation so we
are sure that it will help clarifying doubts about CLAM that you have had since your first contact with
the framework.

150

CLAM User and development documentation

	I Introduction
	1 Disclaimer
	2 License of this document
	3 What is CLAM?
	4 What does 'CLAM' mean?
	5 Historical background
	6 Supported platforms
	7 Recommended previous skills
	8 Basic principles
	8.1 Processing architecture
	8.2 Processing classes
	8.3 Dynamic Types
	8.4 Visualization Module
	8.5 System utilities

	9 Structure of this document
	10 Where to find more information on CLAM

	USER DOCUMENTATION
	II Deploying CLAM in your system
	11 Roadmap
	12 Obtaining the CLAM sources
	12.1 GNU Tools distributed with MacOS X 10.2 Specific Issues

	13 Dependencies on third-party libraries
	13.1 External libraries on GNU/Linux
	13.2 External libraries on Microsoft Windows

	III CLAM Build System Documentation
	14 Overview
	15 Setting up CLAM Build System
	16 USE / HAS variables
	16.1 Included configuration files
	16.2 Editing the packages-win.cfg file
	16.3 Setup on MS Visual Studio
	16.3.1 Configuring Visual 6 to use srcdeps
	16.3.2 Compiling our first CLAM example

	16.4 Setup on GNU/Linux
	16.4.1 Compiling our first CLAM example

	17 How to set up your own programs using CLAM
	17.1 An out-of-the-box example
	17.2 Customizing your project

	18 CLAM and QT toolkit library
	19 CLAM build system configuration variables reference
	19.1 Build system variables reference
	19.2 CLAM configuration variables
	19.3 External libraries variables

	20 Generating CLAM binaries
	21 Some useful links
	22 Build system troubleshooting
	23 Some common problems while using Microsoft Visual C++
	23.1 Getting lots of LNK2001 errors: redefinition of C/C++ Standard Library symbols
	23.2 Getting lots of compiling errors not related to your Project †What's config.h about?‡
	23.3 Not finding a user defined header
	23.4 My dynamic_cast's are failing for no apparent reason
	23.5 I am getting an Internal Compiler Error message!!!
	23.6 My Visual C++ is behaving weirdly and signalling non-sense error messages
	23.7 The compiler does not find FL/Flxxxx.H or DOM/xxxx.hpp

	24 Some common problems while using GNU/Linux and GNU C++ Compiler
	24.1 FFTW
	24.1.1 Getting error when trying to locate fftw header/libs

	24.2 FLTK
	24.2.1 Checking fltk libs fails and config.log contains compiler errors
	24.2.2 Checking fltk libs fails and config.log contains linking errors, or the program test couldn't be executed.
	24.2.3 fltk-config not found

	24.3 QT
	24.3.1 No qt headers found! having qt installed correctly in the system
	24.3.2 Found qt headers but crashed testing lib because library †qt or qt-mt‡ not found.
	24.3.3 Compiler errors related to exit and throw functions

	24.4 XERCES
	24.4.1 Checking xerces libs fails and config.log contains compiler errors
	24.4.2 Checking xerces libs fails and config.log contains linking errors, or the program test couldn't be executed

	24.5 STL
	24.5.1 Getting these errors:

	24.6 Common problems trying to compile and execute CLAM applications
	24.6.1 Compiling is ok but getting errors trying to link/execute the program

	IV Usage tutorial
	25 Introduction
	26 Instanciating Processing objects
	27 Processing Data
	28 Usage examples

	V Usage examples
	VI Dynamic Types
	29 Scope
	30 Why Dynamic Types ?
	31 Where can DT be found within the CLAM library?
	32 Declaring a DT
	33 Basic usage
	34 Prototypes and copy constructors
	35 Storing and Loading DTs
	35.1 How to explore a DT at debug time

	VII Processing classes
	36 Introduction
	36.1 Class hierarchies
	36.2 Coding style and philosophy

	37 Overview of the processing class implementation tasks
	37.1 Declaring the processing interface attributes
	37.2 Implementing the construction mechanism
	37.3 Implementing the configuration mechanism
	37.4 Implementing the execution methods
	37.5 Implementing other optional standard methods
	37.6 Writing the tests

	38 Object construction and configuration interface
	38.1 Processing configuration classes
	38.1.1 The role of processing configuration classes
	38.1.2 Configuration class implementation

	38.2 Processing constructors
	38.3 Configuration methods

	39 Object execution interface
	39.1 Execution states
	39.2 Execution methods
	39.3 Object execution not using ports
	39.3.1 Do method argument conventions

	40 Controls
	40.1 Input Controls
	40.1.1 Regular input controls
	40.1.2 Input controls with call-back method

	40.2 Output Controls
	40.3 Controls initialization

	41 Internal object state
	41.1 Configuration related attributes
	41.2 Execution related attributes
	41.2.1 Initialization

	42 Processing Composite
	43 Exception Handling
	43.1 Assertions
	43.1.1 Where to use assertions
	43.1.2 How to make assertions

	43.2 Run time problems

	44 Writing tests for your classes
	44.1 Why?
	44.2 How?

	45 Helper classes
	45.1 Enumeration classes
	45.2 Flags classes

	46 Prototypes
	
	46.0.1 Footnotes

	VIII Processing Data classes
	47 Scope
	48 Introduction
	49 Basic structural aspects
	50 Efficiency Issues
	51 Introduction to CLAM`s Core PD classes
	51.1 Audio
	51.2 Spectrum
	51.3 SpectralPeak and SpectralPeakArray
	51.4 Fundamental
	51.5 Frame
	51.6 Segment
	51.7 Descriptors

	52 Basic XML support

	IX XML Support
	53 Scope
	54 Brief introduction to XML
	55 Storing components
	56 Loading components
	57 Detailed step interface

	X Audio File I/O in CLAM
	58 What is able to do?
	59 Usage examples

	XI Audio I/O
	60 The AudioManager
	61 The AudioIn and AudioOut classes
	61.1 Specifying the device
	61.2 Specifying the channel

	XII MIDI I/O
	62 The MIDIManager
	63 MIDI I/O Processings and their configuration
	63.1 The MIDIIn and MIDIInControl class
	63.2 The MIDIOut and MIDIOutControl class
	63.3 The MIDIIOConfig class
	63.4 Dynamically created InControls and OutControls

	64 The MIDIDevice class
	64.1 Specifying the MIDI device
	64.2 Clocking the MIDI device

	65 MIDI Enums

	XIII The Application Classes
	66 BaseAudioApplication
	67 GUIAudioApplication
	68 AudioApplication
	69 Creating and running an Application

	XIV Visualization Module
	70 Plots
	70.1 Plots examples

	71 Model Adapters and Presentations

	XV SDIF SUPPORT
	DEVELOPER DOCUMENTATION
	XVI CLAM Coding Conventions
	72 Indenting code
	73 Naming conventions
	74 Programming style
	75 Error Conditions
	76 Debugging aids

	XVII Error Handling
	77 Use case analysis
	77.1 Actors
	77.2 Stages
	77.3 Mechanisms

	78 Sanity checks and assertions
	78.1 Expression assertions
	78.2 Statement based 'assertions' †checks‡
	78.3 Documenting assertions
	78.4 Optimization and assertions
	78.5 Managing assertions from the application
	78.6 Debugging the release mode

	79 Exceptions
	79.1 Previous note
	79.2 When to use Exceptions
	79.3 Contract between throwers and catchers
	79.4 Exception data and exception hierarchy
	79.5 Exception handling
	79.6 Contextualization

	XVIII Dynamic Types
	80 DTs that derive from an interface class
	81 Typical Errors
	81.1 Detected errors at compile time:
	81.1.1 Constructor errors
	81.1.2 Attribute position out of bounds
	81.1.3 Attribute not defined
	81.1.4 Duplicated attributes

	81.2 Detected errors at run time
	81.2.1 Compiling in debug mode †the macro _DEBUG defined ‡
	81.2.2 Compiling in a non debug †release‡ mode
	81.2.3 Compiling for the best run-time efficency

	81.3 Non detected errors

	82 Constructors and initializers
	83 Tuning a DT
	84 Debugging aids and compilation flags
	85 Pointers as dynamic attributes
	86 Copies of DTs
	87 DTs and XML
	87.1 The default XML Implementation for DynamicTypes
	87.2 XML aware dynamic attributes
	87.3 Customization basics
	87.4 Reordering and skipping
	87.5 Recalling the default implementation
	87.6 Adding content not from dynamic attributes
	87.7 Storing not as XML elements or changing the tag name
	87.8 Keeping several alternative XML formats

	XIX Processing Data
	88 Basic structural aspects II
	89 Constructors and initializers
	90 Private members with public interface
	91 Configurations
	92 Customizing XML output
	93 Specific attributes: flags and enums

	XX XML
	94 Components and XML
	95 XML Adapters
	95.1 Simple types adapters
	95.2 Simple type C array adapters
	95.3 Component adapters
	95.4 Loading Considerations

	XXI C pre-processor macros defined and used by CLAM sources
	96 Global flags
	97 Cross-platformness macros
	98 Dynamic Types Macros
	99 Defensive programming macros
	100 preinclude.hxx Macros
	101 Platform dependant macros
	102 Private Macros

	CLAM SAMPLE APPLICATIONS
	XXII Introduction
	103 SMS Example
	104 SALTO
	105 Spectral Delay
	106 Rappid

	XXIII SMS Example
	107 Introduction
	108 Building the application
	109 An SMSTools walkthrough
	110 Analysis Output
	111 Configuration
	112 Synthesis
	113 Transformation
	114 Implementing your own transformation
	115 Internal class structure and program organisation
	116 SMSSynthesis and SMSAnalysis

	XXIV SALTO
	XXV Spectral Delay
	XXVI Rappid
	XXVII Combining CLAM with LADSPA plugins
	117 The LADSPA Toolkit and CLAM, a brief introduction
	118 Using CLAM Processings as LADSPA plugins
	119 Using LADSPA Plugins as CLAM Processings

	MIGRATION GUIDELINES
	120 From 0.6.1 to 0.7.0
	121 From 0.5.5 to 0.5.6
	122 From 0.5.4 to 0.5.5
	123 From 0.4.2 to 0.5.0
	124 From 0.2 to 0.3
	124.1 Dynamic Types
	124.2 Processing Data
	124.3 Error handling
	124.4 PARANOID macro
	124.5 Using exceptions as error message generators
	124.6 Using _DEBUG, NDEBUG and so
	124.7 Miscellaneous

