=mtg 173

CLAM:

C++ Library for
Audio and Music

Introduction

Emtg [-LI—F’T
Goals (l)
» Initial Goal : “To offer a complete,

flexible and cross-platform framework
to support current and future needs for
all projects developed in the MTG”

+ Complete: should include all general utilities needed in
an audio processing project (input/output, processing,
storage, graphical interface...)

+ Flexible: easy to use and adap to any necessity.

+ Cross-platform: should compile on Windows,
GNU/Linux and Mac OSX

r <

Emtg [-l_IF:Jé
Goals (i)
* The initial goals have “slightly”
changed:

* CLAM is part of the AGNULA (A GNU
Linux Audio Distribution) IST project:
Demudi and Rehmudi distributions.

* CLAM is Free Software (GPL)
+* CLAM is public

mtg
Factsheet

+ Started in October 2000

* There are more than 250 C++ classes (50.000
loc), compiled under GNU/ Linux, Windows and
OSX.

* 7 people work on the CLAM core:

+ Xavier Amatriain ¥ Miquel Ramirez
+ Pau Arumi

+ David Garcia

+ Maarten de Boer

* CLAM has been used for a number of internal
projects: time-stretching, real-time sax
synthesis, content analysis and Mpeg7
description (CUIDADQ), real-time audio effects.

* The students at the university also make
extensive use of the framework.

G|

.
=mtg '
Why is CLAM different to other frameworks?

* Basic difference between spectral and
temporal domain processing

* Buffer processing vs. sample-by-sample
processing.

* There are different kinds of data
travelling through a CLAM network

* There is not a single “signal” class
* Objects can process different quantities
of data

* There is not a unique definition of data
chunk.

UNIVERSITA
= \\Q
POMPEU FARRA

.
=mtg '
Why is CLAM different to other frameworks?

*100% Cross-platform

* |t is a framework, not a library

* Two different working modes: framework
and rapid-prototyping application.

* |t is really Object-oriented

* |t is efficient and can be used for real-
time applications

UNIVERSITA
= \\Q
POMPEU FARRA

-
=mtg e

Similar frameworks

UNIVERSITA
= \\Q
POMPEU FARR

* Marsyas

* CSL

* OSW: Open Sound World
* Marsyas

* JMAX

*PD

» SoundClass

* AudioMulch

* L B

=m1tlg

G|

The CLAM infrastructure

A C++ framework for audio and music
processing

=m1tlg
Dynamic Types

UNIVERSITAT
= \\b
POMPEU FARRA

* Foundation: in C++ (and many OO

languages) it is not possible to

instantiate/deinstantiate object attributes on
run-time.

* Dynamic Types are the base for Processing
Data and configuration classes

r <

Emtg [-l_IF:Jé
Dynamic Types
» Goals

* Make it easy to create new classes that conform to
CLAM specifications

* To offer a homogeneous and easy-to-navigate tree
structure.

* A Dynamic Type is like a regular C++ class but it
allows to work with non-instatiated attributes.
+ These attributes can be added/removed on rum-
time
* Also, every attribute has a homogeneus interface
(Add, Remove, Set, Get) that is automatically
derived.

-
=mtg e

Dynamic Types

UNIVERSITA
= \\b
POMPEU FARR

* Implementation based on pre-compiler
macros and templates

* To define a new class, some simple macros
must be used.

* Example:

class Note : public DynamicType

{

public:
DYNAMIC TYPE (Note,4);
DYN ATTRIBUTE (0, public, int, NSines);
DYN ATTRIBUTE (1, public, Array<Sines>,
Sines)
DYN ATTRIBUTE (2, public, float, Pitch);
DYN ATTRIBUTE (3, public ADSR, myADSR);

mtg
Dynamic Types

* Attribute instantiation

* When a Dynamic Type is instantiated, its
attributes are not all automatically instantiated:

only those that are explicitly instantiated in the
Defaultlnit() operation.

Note myNote; (Will only have those attributes
instantiated in the Note::DefaultInit() method)

* You can instantiate attributes by hand:
myNote.AddPitch();

myNote.UpdateData(); (only once for a set
of Add/Replace operations)

* Using a dynamic type

myNote.SetPitch(440.2)
float pitch=myNote. GetPltch();

UNIVERSITAT
= \\b
POMPEU FARRA

N
=mtg e
Processing Data

» All data involved In the process must
be a subclass of the ProcessingData
abstract class.

* Inputs/outputs to a Processing object
must be Processing Data

* Processing Data are Dynamic Types
* Most of its interface is automatically derived

* Any Processing Data has automatic
XML persistency

UNIVERSITA
= \\b
POMPEU FARR

\

mtg

Processing

UNIVERSITAT
.

"I'I'U

POMPEU

Incoming Controls Input Cantrols

Configuration
Influence of input
Wiput Ports contrals on
algorithme
Algorith
SN ES g
:_ -
|_ & . ezttt Ml ':::/ Outeoming Processing
|

Incoming Procassing Data

£
&

N
DD[qunr:tinn‘/ — |5\L{‘I N \:nﬂumc&af

Output Controls algarithms an
output contrels

Cutput Port

Chutcoming Conirols

Processing Object Representation

N
=mtg e
Processing

UNIVERSITA
= \\b
POMPEU FARR

* All the processing in CLAM has to
happen inside a Processing class.

* The operation that triggers execution is
the Do() operation, this is the only
operation called from the external
processing loop.

* Input and output from the processing
can be done passing data to the Do()
operation or using a more complex
(better) Port mechanism.

mtg
Processing.Controls

» Control signals are treated differently

* Controls generate “events” only when their
value is modified.

* Events travel to input controls located In
another processing object that has
previously been connected.

* Processing objects can publish methods
that act like functions called by input
controls.

* Processing objects can generate “events”

for their output controls during the Do()
execution.

G

e
=mtg 7
Processing.Configuration -

* Processing classes have an associated
configuration class.
* Holds configuration parameters.

* These parameters can also hold initial
values for controls.

* A configuration parameter can only be
modified when the processing object is not
In a "running” state.

mtg
CLAM Network model

* A CLAM network can be seen as a set of

iIndependent but connected Processing objects
that encapsulate certain processes and
collaborate for a common goal.

* The CLAM network is a graphical model of
computation based on Dataflow Process
Networks (very similar to Simulink or Ptolemy)

* Scheduling can be performed both statically
and dynamically, depending on the particular
application.

G|

=mtlg
CLAM Network model

Data Flow

Input Port
.'I ,f ----------------- h XX Tnput Control
' 2

(::) Outiout Port
; O
E] Output éontrol

Processing Ooject

Control Flow f”fff lﬁ

—

=B e

=m1tlg
CLAM Network model

* CLAM makes a clear distinction between
a synchronous data flow and an
asynchronous control flow.

* Processing objects receive incoming data
through their input ports and send
processed data through their output ports
(or in a similar way as arguments of the Do

().

UNIVERSITAT
= \\Q
POMPEU FARRA

N
S =
=mtg T

Processing Data Repository

* Ready to use processing data:
»* Audio
* Spectrum
» SpectralPeakArray
* Fundamental
* Frame
* Segment

e
=mtg e

Processing Repository

UNIVERSIT
= \\Q
POMPEU FABR

»* Ready to use processing classes (almost
150 Processsing classes):

* Analysis: FFT, spectral analysis, SMS
analysis...

* Arithmetic Operators

*» Input/Output Processings: Audio,
AudioFile, MIDI, SDIF

* Generators
* Transformations
» Synthesis

=m1tlg
Available applications

- SMSTools

. : |
| i . E |
i : I
1 i i
i L £
i
] i ¥
]
i i
i i i
i i
| f - "
i L N u i abs o =
w L] L) LY] L] =

=m1tlg
Available applications

G ()

- Salto

=m1tlg
Available applications

UNIVERSITAT
= \\b
POMPEU FARRA

- SpectralDelay

\

=mtg
Available applications

UNIVERSITAT
-no

POMPEU F

- Network Editor

=0

Fila View Network Actions About
A

H-Binary Operations
#-Controls
ernals

*LadspalLoader
- Generators
ADSR
Oscillator

SimpleOscillator
=-Input/Qutput
AudioFileIn
AudioFileOut

-
=mtg e

XML Interface

UNIVERSITA
= \\b
POMPEU FARR

» Goal

* Implementing data persistency

* Ofering an easy way to store an object in
XML format.

* Dynamic Types have an automatically
derived XML (Store/Load) interface.

* And therefore Processing Data.

mtg
XML Interface

G|

UNIVERSITAT
POMPEU FARRA

-<Spectrum>
<prConfig>
<Scale>Linear</Scale>

<SpectralRange>4000</SpectralRange>
<Size>513</Size>
<Type>MagPhase Complex</Type>
</prConfig>

- <MagBuffer>

<content>3.98157 4.02727 4.16642 4.40572 4.75821 5.24668 5.90992 6.81515 8.08461 9.96051
12.9877 18.6098 31.1381 60.5695 98.2945 89.1955 54.8392 30.1422 19.2311 14.0992 11.235
9.40867 8.13581 </content>

</MagBuffer>
- <PhaseBuffer>

<content>3.14159 3.03485 2.93081 2.83178 2.73945 2.65478 2.57805 2.50887 2.44616 2.38745
2.32608 2.23915 2.04041 1.47977 0.115056 3.09922 -1.87873 -1.376 -1.21958 -1.17472 -
1.16297 -1.16238 -1.16613 </content>

</PhaseBuffer>

</Spectrum>

r <

=mtg T
GUI

* CLAM offers its own infrastructure to integrate
user interface into applications.
* It is made of a set of classes that implement an
architecture derived from the MVC pattern and
allows us to see data objects, processing objects
and connexions in between them.
* Appart from that there are ready-to-use utilities:
* Views of the most important Processing Data:
Audio, Spectrum...
* Debugging tools (Plots)

=mtg v
Audio I/O

* Using several libraries like Alsa, RtAudio or
PortAudio CLAM offers audio i/o platform
abstraction and integration into the CLAM model.
* The main class in CLAM audio input/output is
AudioManager:

* [t is in charge of all administrative tasks related
to the creation and initialization of audio
streams using the AudioDevice class (which is
system dependant).

* The first thing to do in order to use audio is to
create an instance of the AudioManager class
(singleton) that will be used by the rest of the
audio I/O obijects.

r <

=m1tlg ﬁ
Audio 1/O

* Then you can use the Audioln and AudioOut
classes in order to read or write Audio from your
sound card.

* These objectes are created using an
AudiolOConfig object that specifies the device,
the channel and the sampling rate.

* These classes process mono channels (you
have to instantiate one for each channel you
want to stream).

* To specify the device you must use a string with
the following syntax:
"ARCHITECTURE:DEVICE"

mtg
Audio I/O

* At this moment we have implemented the alsa
and directx architectures (the latter using
PortAudio, RtAudio or DirectX)

* Available devices depen on the hardware and
system configuration (You may use the
AudioDevicelist class in order to obtain a list of
available devices).

* But if you don't specify the device or use the
“default:default” string, AudioManager will
automatically choose whatever device it thinks
more appropiate for your system.

G

=mtg m
Audio I/O

*You can specify the channel you want for every
Audioln or AudioOut. Audio Manager will use this
information for initializing internal management
issues. We usually recommend O for L channel
and 1 for R channel.

*Example:

AudioManager audioManager;

inCfgL.SetName("left in");
inCfgL.SetChannelID(0);

inCfgR.SetName("right in");
inCfgR.SetChannelID(1);

AudioIn inL(inCfglL);
AudioIn inR(inCfgR);

mtg
Audio I/O: files

* We have implemented our own library for
managing input/output of audio files.

* At the time being we only support raw, aiff and
wav formats (a student is currently working on
enhancing these).

* But what makes it different from most of the
existing libraries is that it allows simultaneous
reading/writing into the same file.

G

=m1tlg
MIDI 1/O

+ MIDI I/O has been implemented using the PortMIDI library.
+ The infrastructure is very similar to the Audio I/O one. We
also have a MIDIManager.

+ There is a MIDlIIn class and a derived MIDIInControl that
can be used to convert MIDI messages into CLAM controls.

UNIVERSITAT
= \\b
POMPEU FARRA

=m1tlg
MIDI Input

* The MIDIInConfig class has 3 parameters that

specify what MIDI messages will be filtered to a
particular MIDIIn object:

* ChannelMask (bitmask)

cfg.SetChannelMask(MIDI::ChannelMask(1l) |
MIDI::ChannelMask(2));

* MessageMask (bitmask)

cfg.SetChannelMask (MIDI: :MessageMask
(MIDI::eNoteOff) |
MIDI: :MessageMask(MIDI: :eNoteOn));
* Filter (filter to apply accotding to second bit in
MIDI message)

+ A MIDI file is treated as a MIDI device

UNIVERSITAT
CEiQ
POMPEU FARRA

e
=mt —
S 20U
Tools used in CLAM

* Programming language: C++

* Flexibility

*» Efficiency

* Standard vs. proprietaty language
* Programming tools

* Windows: Visual C++ 7.X

* Linux: gcc and other gnu tools

* Mac OSX: gcc

mtg
Tools in CLAM

* CVS: code versioning control system for
collaborative work (LinCVS recommended
graphical front-end)

* Mantis: bug managing system based on a web
interface

* Doxyen: generates html documentation from the
javadocs comments inserted in the source files

* Mailing lists: clam@iua.upf.es

G

-
=mtg e

External libraries

UNIVERSITA
= \\b
POMPEU FARR

*FFTW (FFT)

+ Xercesc (XML parser that uses the DOM API)

* FLTK (GUI toolkit)

+ Qt (GUI toolkit, not necessary but used in some
applications)

+* PTHREADS (multithreading on Windows)

+ RtAudio, PortAudio, DirectX (for Windows audio)
+ CppUnit (testing framework, only used for
development)

*+ libsndfile: a library for reading and writing several
audio file formats.

+ Underbit's libmad: Mpeg Audio Decoding library.
+ Xiph.org Ogg/Vorbis SDK: free implementation of
Vorbis | encoder and decoder.

+ id3lib: a library for parsing ID3 tags found on Mpeg
audio bitstreams.

mtg

Conclusions

* Although there are still things to do, CLAM is
already a usable framework that can yield
interesting, efficient and robust applications.

G

