
CLAM:
C++ Library for

Audio and Music

Introduction

Goals (I)

Initial Goal : “To offer a complete,
flexible and cross-platform framework
to support current and future needs for
all projects developed in the MTG”

Complete: should include all general utilities needed in
an audio processing project (input/output, processing,
storage, graphical interface...)
Flexible: easy to use and adap to any necessity.
Cross-platform: should compile on Windows,
GNU/Linux and Mac OSX

Goals (II)

The initial goals have “slightly”
changed:

CLAM is part of the AGNULA (A GNU
Linux Audio Distribution) IST project:
Demudi and Rehmudi distributions.
CLAM is Free Software (GPL)
CLAM is public

Started in October 2000
There are more than 250 C++ classes (50.000
loc), compiled under GNU/ Linux, Windows and
OSX.
7 people work on the CLAM core:

Xavier Amatriain
Pau Arumi
David Garcia
Maarten de Boer

CLAM has been used for a number of internal
projects: time-stretching, real-time sax
synthesis, content analysis and Mpeg7
description (CUIDADO), real-time audio effects.
The students at the university also make
extensive use of the framework.

Factsheet

Miquel Ramírez

Why is CLAM different to other frameworks?

 Basic difference between spectral and
temporal domain processing

Buffer processing vs. sample-by-sample
processing.

 There are different kinds of data
travelling through a CLAM network

There is not a single “signal” class

 Objects can process different quantities
of data

There is not a unique definition of data
chunk.

Why is CLAM different to other frameworks?

 100% Cross-platform
 It is a framework, not a library
 Two different working modes: framework

and rapid-prototyping application.
 It is really Object-oriented
 It is efficient and can be used for real-

time applications

Similar frameworks

 Marsyas
 CSL
 OSW: Open Sound World
 Marsyas
 JMAX
 PD
 SoundClass
 AudioMulch
 ...

The CLAM infrastructure

A C++ framework for audio and music
processing

Dynamic Types

 Foundation: in C++ (and many OO
languages) it is not possible to
instantiate/deinstantiate object attributes on
run-time.
 Dynamic Types are the base for Processing

Data and configuration classes

Dynamic Types

Goals
Make it easy to create new classes that conform to
CLAM specifications
To offer a homogeneous and easy-to-navigate tree
structure.
A Dynamic Type is like a regular C++ class but it
allows to work with non-instatiated attributes.

These attributes can be added/removed on rum-
time

Also, every attribute has a homogeneus interface
(Add, Remove, Set, Get) that is automatically
derived.

Dynamic Types

 Implementation based on pre-compiler
macros and templates

To define a new class, some simple macros
must be used.
Example:

class Note : public DynamicType
{
public:

DYNAMIC_TYPE (Note,4);
DYN_ATTRIBUTE (0, public, int, NSines);
DYN_ATTRIBUTE (1, public, Array<Sines>,
Sines)
DYN_ATTRIBUTE (2, public, float, Pitch);
DYN_ATTRIBUTE (3, public ADSR, myADSR);

};

Dynamic Types

 Attribute instantiation
 When a Dynamic Type is instantiated, its
attributes are not all automatically instantiated:
only those that are explicitly instantiated in the
DefaultInit() operation.

Note myNote; (Will only have those attributes
instantiated in the Note::DefaultInit() method)

 You can instantiate attributes by hand:
myNote.AddPitch();
myNote.UpdateData(); (only once for a set

of Add/Replace operations)

 Using a dynamic type
myNote.SetPitch(440.2);
float pitch=myNote.GetPitch();

Processing Data
 All data involved in the process must

be a subclass of the ProcessingData
abstract class.
 Inputs/outputs to a Processing object

must be Processing Data
 Processing Data are Dynamic Types

 Most of its interface is automatically derived

 Any Processing Data has automatic
XML persistency

Processing

 All the processing in CLAM has to
happen inside a Processing class.
 The operation that triggers execution is

the Do() operation, this is the only
operation called from the external
processing loop.
 Input and output from the processing

can be done passing data to the Do()
operation or using a more complex
(better) Port mechanism.

Processing

 Control signals are treated differently
Controls generate “events” only when their
value is modified.
Events travel to input controls located in
another processing object that has
previously been connected.
Processing objects can publish methods
that act like functions called by input
controls.
Processing objects can generate “events”
for their output controls during the Do()
execution.

Processing.Controls

 Processing classes have an associated
configuration class.

Holds configuration parameters.
These parameters can also hold initial
values for controls.
A configuration parameter can only be
modified when the processing object is not
in a "running" state.

Processing.Configuration

CLAM Network model

 A CLAM network can be seen as a set of
independent but connected Processing objects
that encapsulate certain processes and
collaborate for a common goal.
 The CLAM network is a graphical model of

computation based on Dataflow Process
Networks (very similar to Simulink or Ptolemy)
 Scheduling can be performed both statically

and dynamically, depending on the particular
application.

CLAM Network model

CLAM Network model

 CLAM makes a clear distinction between
a synchronous data flow and an
asynchronous control flow.
 Processing objects receive incoming data

through their input ports and send
processed data through their output ports
(or in a similar way as arguments of the Do
()).

Processing Data Repository

 Ready to use processing data:
 Audio
 Spectrum
 SpectralPeakArray
 Fundamental
 Frame
 Segment

Processing Repository

 Ready to use processing classes (almost
150 Processsing classes):

 Analysis: FFT, spectral analysis, SMS
analysis...
 Arithmetic Operators
 Input/Output Processings: Audio,

AudioFile, MIDI, SDIF
 Generators
 Transformations
 Synthesis

Available applications

- SMSTools

Available applications

- Salto

Available applications

- SpectralDelay

Available applications

- Network Editor

XML Interface

 Goal
 Implementing data persistency
 Ofering an easy way to store an object in
XML format.

 Dynamic Types have an automatically
derived XML (Store/Load) interface.

 And therefore Processing Data.

-<Spectrum>

-- <prConfig>

 <Scale>Linear</Scale>

 <SpectralRange>4000</SpectralRange>

 <Size>513</Size>

 <Type>MagPhase Complex</Type>

 </prConfig>

- <MagBuffer>

<content>3.98157 4.02727 4.16642 4.40572 4.75821 5.24668 5.90992 6.81515 8.08461 9.96051
12.9877 18.6098 31.1381 60.5695 98.2945 89.1955 54.8392 30.1422 19.2311 14.0992 11.235
9.40867 8.13581 </content>

 </MagBuffer>

- <PhaseBuffer>

<content>3.14159 3.03485 2.93081 2.83178 2.73945 2.65478 2.57805 2.50887 2.44616 2.38745
2.32608 2.23915 2.04041 1.47977 0.115056 3.09922 -1.87873 -1.376 -1.21958 -1.17472 -
1.16297 -1.16238 -1.16613 </content>

 </PhaseBuffer>

</Spectrum>

XML Interface

GUI

 CLAM offers its own infrastructure to integrate
user interface into applications.
 It is made of a set of classes that implement an

architecture derived from the MVC pattern and
allows us to see data objects, processing objects
and connexions in between them.
 Appart from that there are ready-to-use utilities:

 Views of the most important Processing Data:
Audio, Spectrum...
 Debugging tools (Plots)

Audio I/O

 Using several libraries like Alsa, RtAudio or
PortAudio CLAM offers audio i/o platform
abstraction and integration into the CLAM model.
 The main class in CLAM audio input/output is

AudioManager:
It is in charge of all administrative tasks related
to the creation and initialization of audio
streams using the AudioDevice class (which is
system dependant).

 The first thing to do in order to use audio is to
create an instance of the AudioManager class
(singleton) that will be used by the rest of the
audio I/O objects.

Audio I/O

 Then you can use the AudioIn and AudioOut
classes in order to read or write Audio from your
sound card.

These objectes are created using an
AudioIOConfig object that specifies the device,
the channel and the sampling rate.
These classes process mono channels (you
have to instantiate one for each channel you
want to stream).

 To specify the device you must use a string with
the following syntax:

"ARCHITECTURE:DEVICE"

Audio I/O

 At this moment we have implemented the alsa
and directx architectures (the latter using
PortAudio, RtAudio or DirectX)
 Available devices depen on the hardware and

system configuration (You may use the
AudioDeviceList class in order to obtain a list of
available devices).
 But if you don't specify the device or use the

“default:default” string, AudioManager will
automatically choose whatever device it thinks
more appropiate for your system.

Audio I/O

 You can specify the channel you want for every
AudioIn or AudioOut. Audio Manager will use this
information for initializing internal management
issues. We usually recommend 0 for L channel
and 1 for R channel.
Example:

AudioManager audioManager;

inCfgL.SetName("left in");
inCfgL.SetChannelID(0);

inCfgR.SetName("right in");
inCfgR.SetChannelID(1);

AudioIn inL(inCfgL);
AudioIn inR(inCfgR);

Audio I/O: files

 We have implemented our own library for
managing input/output of audio files.
 At the time being we only support raw, aiff and

wav formats (a student is currently working on
enhancing these).
 But what makes it different from most of the

existing libraries is that it allows simultaneous
reading/writing into the same file.

MIDI I/O

 MIDI I/O has been implemented using the PortMIDI library.
 The infrastructure is very similar to the Audio I/O one. We

also have a MIDIManager.
 There is a MIDIIn class and a derived MIDIInControl that

can be used to convert MIDI messages into CLAM controls.

MIDI Input

 The MIDIInConfig class has 3 parameters that
specify what MIDI messages will be filtered to a
particular MIDIIn object:

ChannelMask (bitmask)
cfg.SetChannelMask(MIDI::ChannelMask(1) |
MIDI::ChannelMask(2));
MessageMask (bitmask)
cfg.SetChannelMask(MIDI::MessageMask
(MIDI::eNoteOff) |

MIDI::MessageMask(MIDI::eNoteOn));
Filter (filter to apply accotding to second bit in
MIDI message)

 A MIDI file is treated as a MIDI device

Tools used in CLAM

 Programming language: C++
 Flexibility
 Efficiency
 Standard vs. proprietaty language

 Programming tools
 Windows: Visual C++ 7.X
 Linux: gcc and other gnu tools
 Mac OSX: gcc

Tools in CLAM

 CVS: code versioning control system for
collaborative work (LinCVS recommended
graphical front-end)
 Mantis: bug managing system based on a web

interface
 Doxyen: generates html documentation from the

javadocs comments inserted in the source files
 Mailing lists: clam@iua.upf.es

External libraries

 FFTW (FFT)
 Xercesc (XML parser that uses the DOM API)
 FLTK (GUI toolkit)
 Qt (GUI toolkit, not necessary but used in some

applications)
 PTHREADS (multithreading on Windows)
 RtAudio, PortAudio, DirectX (for Windows audio)
 CppUnit (testing framework, only used for

development)
 libsndfile: a library for reading and writing several

audio file formats.
 Underbit's libmad: Mpeg Audio Decoding library.
 Xiph.org Ogg/Vorbis SDK: free implementation of

Vorbis I encoder and decoder.
 id3lib: a library for parsing ID3 tags found on Mpeg

audio bitstreams.

Conclusions

 Although there are still things to do, CLAM is
already a usable framework that can yield
interesting, efficient and robust applications.

